These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. Guo B; Jin Y; Wussler C; Blancaflor EB; Motes CM; Versaw WK New Phytol; 2008; 177(4):889-898. PubMed ID: 18086223 [TBL] [Abstract][Full Text] [Related]
3. The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. Karlsson PM; Herdean A; Adolfsson L; Beebo A; Nziengui H; Irigoyen S; Ünnep R; Zsiros O; Nagy G; Garab G; Aronsson H; Versaw WK; Spetea C Plant J; 2015 Oct; 84(1):99-110. PubMed ID: 26255788 [TBL] [Abstract][Full Text] [Related]
4. Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Nagarajan VK; Jain A; Poling MD; Lewis AJ; Raghothama KG; Smith AP Plant Physiol; 2011 Jul; 156(3):1149-63. PubMed ID: 21628630 [TBL] [Abstract][Full Text] [Related]
5. The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis. Cubero B; Nakagawa Y; Jiang XY; Miura KJ; Li F; Raghothama KG; Bressan RA; Hasegawa PM; Pardo JM Mol Plant; 2009 May; 2(3):535-52. PubMed ID: 19825636 [TBL] [Abstract][Full Text] [Related]
6. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana. Brauner K; Hörmiller I; Nägele T; Heyer AG Plant J; 2014 Jul; 79(1):82-91. PubMed ID: 24836712 [TBL] [Abstract][Full Text] [Related]
7. Starch-related cytosolic heteroglycans in roots from Arabidopsis thaliana. Malinova I; Steup M; Fettke J J Plant Physiol; 2011 Aug; 168(12):1406-14. PubMed ID: 21269731 [TBL] [Abstract][Full Text] [Related]
8. Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis. Hassler S; Lemke L; Jung B; Möhlmann T; Krüger F; Schumacher K; Espen L; Martinoia E; Neuhaus HE Plant J; 2012 Dec; 72(5):732-44. PubMed ID: 22788523 [TBL] [Abstract][Full Text] [Related]
9. NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. Kirchsteiger K; Ferrández J; Pascual MB; González M; Cejudo FJ Plant Cell; 2012 Apr; 24(4):1534-48. PubMed ID: 22505729 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of a phosphate transporter gene ZmPt9 from maize influences growth of transgenic Arabidopsis thaliana. Xu Y; Bao H; Fei H; Zhou W; Li X; Liu F Biochem Biophys Res Commun; 2021 Jun; 558():196-201. PubMed ID: 32962860 [TBL] [Abstract][Full Text] [Related]
11. A Brassica napus PHT1 phosphate transporter, BnPht1;4, promotes phosphate uptake and affects roots architecture of transgenic Arabidopsis. Ren F; Zhao CZ; Liu CS; Huang KL; Guo QQ; Chang LL; Xiong H; Li XB Plant Mol Biol; 2014 Dec; 86(6):595-607. PubMed ID: 25194430 [TBL] [Abstract][Full Text] [Related]
12. Molecular physiological analysis of the two plastidic ATP/ADP transporters from Arabidopsis. Reiser J; Linka N; Lemke L; Jeblick W; Neuhaus HE Plant Physiol; 2004 Nov; 136(3):3524-36. PubMed ID: 15516503 [TBL] [Abstract][Full Text] [Related]
13. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Arpat AB; Magliano P; Wege S; Rouached H; Stefanovic A; Poirier Y Plant J; 2012 Aug; 71(3):479-91. PubMed ID: 22449068 [TBL] [Abstract][Full Text] [Related]
14. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1. Sun J; Zhang J; Larue CT; Huber SC Plant Cell Environ; 2011 Apr; 34(4):592-604. PubMed ID: 21309792 [TBL] [Abstract][Full Text] [Related]
15. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Su T; Xu Q; Zhang FC; Chen Y; Li LQ; Wu WH; Chen YF Plant Physiol; 2015 Apr; 167(4):1579-91. PubMed ID: 25733771 [TBL] [Abstract][Full Text] [Related]
16. Characterization of CYCLOPHILLIN38 shows that a photosynthesis-derived systemic signal controls lateral root emergence. Duan L; Pérez-Ruiz JM; Cejudo FJ; Dinneny JR Plant Physiol; 2021 Mar; 185(2):503-518. PubMed ID: 33721893 [TBL] [Abstract][Full Text] [Related]
18. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots. Durand M; Porcheron B; Hennion N; Maurousset L; Lemoine R; Pourtau N Plant Physiol; 2016 Mar; 170(3):1460-79. PubMed ID: 26802041 [TBL] [Abstract][Full Text] [Related]
19. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. Remy E; Cabrito TR; Batista RA; Teixeira MC; Sá-Correia I; Duque P New Phytol; 2012 Jul; 195(2):356-371. PubMed ID: 22578268 [TBL] [Abstract][Full Text] [Related]
20. Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Stefanovic A; Ribot C; Rouached H; Wang Y; Chong J; Belbahri L; Delessert S; Poirier Y Plant J; 2007 Jun; 50(6):982-94. PubMed ID: 17461783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]