These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21960308)

  • 1. Open questions in computational motor control.
    Karniel A
    J Integr Neurosci; 2011 Sep; 10(3):385-411. PubMed ID: 21960308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning from learning: what can visuomotor adaptations tell us about the neuronal representation of movement?
    Paz R; Vaadia E
    Adv Exp Med Biol; 2009; 629():221-42. PubMed ID: 19227502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theories and control models and motor learning: clinical applications in neuro-rehabilitation.
    Cano-de-la-Cuerda R; Molero-Sánchez A; Carratalá-Tejada M; Alguacil-Diego IM; Molina-Rueda F; Miangolarra-Page JC; Torricelli D
    Neurologia; 2015; 30(1):32-41. PubMed ID: 22341985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
    Davidson PR; Jones RD; Andreae JH; Sirisena HR
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1242-52. PubMed ID: 12450354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread access to predictive models in the motor system: a short review.
    Davidson PR; Wolpert DM
    J Neural Eng; 2005 Sep; 2(3):S313-9. PubMed ID: 16135891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical Motor Control Learned with Deep Deterministic Policy Gradient.
    Shi H; Sun Y; Li J
    Comput Intell Neurosci; 2018; 2018():8535429. PubMed ID: 29666634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational mechanisms of sensorimotor control.
    Franklin DW; Wolpert DM
    Neuron; 2011 Nov; 72(3):425-42. PubMed ID: 22078503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational approaches to motor control and their potential role for interpreting motor dysfunction.
    Scott SH; Norman KE
    Curr Opin Neurol; 2003 Dec; 16(6):693-8. PubMed ID: 14624078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning.
    Penhune VB; Steele CJ
    Behav Brain Res; 2012 Jan; 226(2):579-91. PubMed ID: 22004979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Variability in Motor Learning.
    Dhawale AK; Smith MA; Ölveczky BP
    Annu Rev Neurosci; 2017 Jul; 40():479-498. PubMed ID: 28489490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feed-forward control of a redundant motor system.
    Goodman SR; Latash ML
    Biol Cybern; 2006 Sep; 95(3):271-80. PubMed ID: 16838148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational principles of movement neuroscience.
    Wolpert DM; Ghahramani Z
    Nat Neurosci; 2000 Nov; 3 Suppl():1212-7. PubMed ID: 11127840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory feedback therapy and theoretical knowledge of motor control and learning.
    Mulder T; Hulstyn W
    Am J Phys Med; 1984 Oct; 63(5):226-44. PubMed ID: 6385730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptive process model of motor learning: insights for the teaching of motor skills.
    Tani G; Corrêa UC; Basso L; Benda RN; Ugrinowitsch H; Choshi K
    Nonlinear Dynamics Psychol Life Sci; 2014 Jan; 18(1):47-65. PubMed ID: 24314130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
    Botzer L; Karniel A
    Eur J Neurosci; 2013 Jul; 38(1):2108-23. PubMed ID: 23701418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational nature of human adaptive control during learning of reaching movements in force fields.
    Bhushan N; Shadmehr R
    Biol Cybern; 1999 Jul; 81(1):39-60. PubMed ID: 10434390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of adaptation to random conflicting force fields of variable magnitude.
    Gupta R; Ashe J
    J Neurophysiol; 2007 Jan; 97(1):738-45. PubMed ID: 17093124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schema-based learning of adaptable and flexible prey- catching in anurans II. Learning after lesioning.
    Corbacho F; Nishikawa KC; Weerasuriya A; Liaw JS; Arbib MA
    Biol Cybern; 2005 Dec; 93(6):410-25. PubMed ID: 16320080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalization in vision and motor control.
    Poggio T; Bizzi E
    Nature; 2004 Oct; 431(7010):768-74. PubMed ID: 15483597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.