BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 21961598)

  • 1. Chain collapse of an amyloidogenic intrinsically disordered protein.
    Jain N; Bhattacharya M; Mukhopadhyay S
    Biophys J; 2011 Oct; 101(7):1720-9. PubMed ID: 21961598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensing Tryptophan Microenvironment of Amyloid Protein Utilizing Wavelength-Selective Fluorescence Approach.
    Chakraborty H; Chattopadhyay A
    J Fluoresc; 2017 Nov; 27(6):1995-2000. PubMed ID: 28687983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ordered water within the collapsed globules of an amyloidogenic intrinsically disordered protein.
    Arya S; Mukhopadhyay S
    J Phys Chem B; 2014 Aug; 118(31):9191-8. PubMed ID: 25035108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational transition of κ-casein in micellar environment: Insight from the tryptophan fluorescence.
    Mishra S; Meher G; Chakraborty H
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Nov; 186():99-104. PubMed ID: 28622544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Heterotypic Amyloids: α-Synuclein in Co-Aggregation.
    Bhasne K; Mukhopadhyay S
    Proteomics; 2018 Nov; 18(21-22):e1800059. PubMed ID: 30216674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dissociated form of kappa-casein is the precursor to its amyloid fibril formation.
    Ecroyd H; Thorn DC; Liu Y; Carver JA
    Biochem J; 2010 Jul; 429(2):251-60. PubMed ID: 20441567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics and dimension of an amyloidogenic disordered state of human β(2)-microglobulin.
    Narang D; Sharma PK; Mukhopadhyay S
    Eur Biophys J; 2013 Oct; 42(10):767-76. PubMed ID: 23974249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using chirality to probe the conformational dynamics and assembly of intrinsically disordered amyloid proteins.
    Raskatov JA; Teplow DB
    Sci Rep; 2017 Oct; 7(1):12433. PubMed ID: 28970487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation and structural changes of α(S1)-, β- and κ-caseins induced by homocysteinylation.
    Stroylova YY; Zimny J; Yousefi R; Chobert JM; Jakubowski H; Muronetz VI; Haertlé T
    Biochim Biophys Acta; 2011 Oct; 1814(10):1234-45. PubMed ID: 21689790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taurine Induces an Ordered but Functionally Inactive Conformation in Intrinsically Disordered Casein Proteins.
    Bhat MY; Singh LR; Dar TA
    Sci Rep; 2020 Feb; 10(1):3503. PubMed ID: 32103094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Dynamism of Intrinsically Disordered Proteins: Binding-Induced Folding, Amyloid Formation, and Phase Separation.
    Mukhopadhyay S
    J Phys Chem B; 2020 Dec; 124(51):11541-11560. PubMed ID: 33108190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins.
    Shaykhalishahi H; Mirecka EA; Gauhar A; Grüning CS; Willbold D; Härd T; Stoldt M; Hoyer W
    Chembiochem; 2015 Feb; 16(3):411-4. PubMed ID: 25557164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (-)-epigallocatechin-3-gallate (EGCG) maintains kappa-casein in its pre-fibrillar state without redirecting its aggregation pathway.
    Hudson SA; Ecroyd H; Dehle FC; Musgrave IF; Carver JA
    J Mol Biol; 2009 Sep; 392(3):689-700. PubMed ID: 19616561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native disulphide-linked dimers facilitate amyloid fibril formation by bovine milk α
    Thorn DC; Bahraminejad E; Grosas AB; Koudelka T; Hoffmann P; Mata JP; Devlin GL; Sunde M; Ecroyd H; Holt C; Carver JA
    Biophys Chem; 2021 Mar; 270():106530. PubMed ID: 33545456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Folding and Aggregation Energy Landscapes of Tethered RRM Domains of Human TDP-43 Are Coupled via a Metastable Molten Globule-like Oligomer.
    Pillai M; Jha SK
    Biochemistry; 2019 Feb; 58(6):608-620. PubMed ID: 30520297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects on light chain amyloid formation depend on mutations and type of glycosaminoglycans.
    Blancas-Mejía LM; Hammernik J; Marin-Argany M; Ramirez-Alvarado M
    J Biol Chem; 2015 Feb; 290(8):4953-4965. PubMed ID: 25538238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and rigidity in an intrinsically disordered protein, β-casein.
    Perticaroli S; Nickels JD; Ehlers G; Mamontov E; Sokolov AP
    J Phys Chem B; 2014 Jul; 118(26):7317-26. PubMed ID: 24918971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methionine oxidation enhances κ-casein amyloid fibril formation.
    Koudelka T; Dehle FC; Musgrave IF; Hoffmann P; Carver JA
    J Agric Food Chem; 2012 Apr; 60(16):4144-55. PubMed ID: 22443319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.