BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21961646)

  • 1. Effect of the simultaneous interaction among ascorbic acid, iron and pH on the oxidative stability of oil-in-water emulsions.
    Branco GF; Rodrigues MI; Gioielli LA; Castro IA
    J Agric Food Chem; 2011 Nov; 59(22):12183-92. PubMed ID: 21961646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3-enriched oil-in-water emulsions.
    Sørensen AD; Haahr AM; Becker EM; Skibsted LH; Bergenståhl B; Nilsson L; Jacobsen C
    J Agric Food Chem; 2008 Mar; 56(5):1740-50. PubMed ID: 18271542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant properties of Teaw (Cratoxylum formosum Dyer) extract in soybean oil and emulsions.
    Maisuthisakul P; Pongsawatmanit R; Gordon MH
    J Agric Food Chem; 2006 Apr; 54(7):2719-25. PubMed ID: 16569066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of iron and hydroperoxides in the degradation of lycopene in oil-in-water emulsions.
    Boon CS; McClements DJ; Weiss J; Decker EA
    J Agric Food Chem; 2009 Apr; 57(7):2993-8. PubMed ID: 19265448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stability of egg and soy lecithin as affected by transition metal ions and pH in emulsion.
    Wang G; Wang T
    J Agric Food Chem; 2008 Dec; 56(23):11424-31. PubMed ID: 18991454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on the antimicrobial activity and oxidative stability of oil-in-water emulsions containing caffeic acid.
    Almajano MP; Carbó R; Delgado ME; Gordon MH
    J Food Sci; 2007 Jun; 72(5):C258-63. PubMed ID: 17995712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pro-oxidant/antioxidant behaviours of ascorbic acid, tocopherol, and plant extracts in n-3 highly unsaturated fatty acid rich oil-in-water emulsions.
    Jayasinghe C; Gotoh N; Wada S
    Food Chem; 2013 Dec; 141(3):3077-84. PubMed ID: 23871062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Caffeic Acid Phenethyl Ester and 4-Vinylcatechol on the Stabilities of Oil-in-Water Emulsions of Stripped Soybean Oil.
    Jia CH; Shin JA; Lee KT
    J Agric Food Chem; 2015 Dec; 63(47):10280-6. PubMed ID: 26492097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polar paradox revisited: analogous pairs of hydrophilic and lipophilic antioxidants in linoleic acid emulsion containing Cu(II).
    Bakır T; Sönmezoğlu I; Imer F; Apak R
    J Sci Food Agric; 2013 Aug; 93(10):2478-85. PubMed ID: 23520052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stabilization of L-ascorbic acid in aqueous solution and water-in-oil-in-water double emulsion by controlling pH and electrolyte concentration.
    Lee JS; Kim JW; Han SH; Chang IS; Kang HH; Lee OS; Oh SG; Suh KD
    J Cosmet Sci; 2004; 55(1):1-12. PubMed ID: 15037917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing the antioxidant and pro-oxidant activity of polyphenols in oil-in-water emulsions.
    Zhou L; Elias RJ
    J Agric Food Chem; 2012 Mar; 60(11):2906-15. PubMed ID: 22356204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible water-in-oil emulsion as a model to study ascorbic acid effect on lipid oxidation.
    Mosca M; Ceglie A; Ambrosone L
    J Phys Chem B; 2008 Apr; 112(15):4635-41. PubMed ID: 18358026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topical activity of ascorbic acid: from in vitro optimization to in vivo efficacy.
    Raschke T; Koop U; Düsing HJ; Filbry A; Sauermann K; Jaspers S; Wenck H; Wittern KP
    Skin Pharmacol Physiol; 2004; 17(4):200-6. PubMed ID: 15258452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation in fish oil enriched mayonnaise: ascorbic acid and low pH increase oxidative deterioration.
    Jacobsen C; Timm M; Meyer AS
    J Agric Food Chem; 2001 Aug; 49(8):3947-56. PubMed ID: 11513694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers.
    Apak R; Güçlü K; Ozyürek M; Bektaşoğlu B; Bener M
    Methods Mol Biol; 2010; 594():215-39. PubMed ID: 20072920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron prevents ascorbic acid (vitamin C) induced hydrogen peroxide accumulation in copper contaminated drinking water.
    Jansson PJ; Lindqvist C; Nordström T
    Free Radic Res; 2005 Nov; 39(11):1233-9. PubMed ID: 16298750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of sunflower oil qualities and antioxidants on oxidative stability on whey-based salad dressings.
    Pavlović MD; Pucarević M; Mićović V; Zivić M; Zlatanović S; Gorjanović S; Gvozdenović J
    Acta Chim Slov; 2012 Mar; 59(1):42-9. PubMed ID: 24061171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in-water emulsions.
    Hu M; McClements DJ; Decker EA
    J Agric Food Chem; 2003 Feb; 51(5):1435-9. PubMed ID: 12590494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide.
    Althoff F; Jugold A; Keppler F
    Chemosphere; 2010 Jun; 80(3):286-92. PubMed ID: 20444486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.