These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21961646)

  • 1. Effect of the simultaneous interaction among ascorbic acid, iron and pH on the oxidative stability of oil-in-water emulsions.
    Branco GF; Rodrigues MI; Gioielli LA; Castro IA
    J Agric Food Chem; 2011 Nov; 59(22):12183-92. PubMed ID: 21961646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3-enriched oil-in-water emulsions.
    Sørensen AD; Haahr AM; Becker EM; Skibsted LH; Bergenståhl B; Nilsson L; Jacobsen C
    J Agric Food Chem; 2008 Mar; 56(5):1740-50. PubMed ID: 18271542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant properties of Teaw (Cratoxylum formosum Dyer) extract in soybean oil and emulsions.
    Maisuthisakul P; Pongsawatmanit R; Gordon MH
    J Agric Food Chem; 2006 Apr; 54(7):2719-25. PubMed ID: 16569066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of iron and hydroperoxides in the degradation of lycopene in oil-in-water emulsions.
    Boon CS; McClements DJ; Weiss J; Decker EA
    J Agric Food Chem; 2009 Apr; 57(7):2993-8. PubMed ID: 19265448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stability of egg and soy lecithin as affected by transition metal ions and pH in emulsion.
    Wang G; Wang T
    J Agric Food Chem; 2008 Dec; 56(23):11424-31. PubMed ID: 18991454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on the antimicrobial activity and oxidative stability of oil-in-water emulsions containing caffeic acid.
    Almajano MP; Carbó R; Delgado ME; Gordon MH
    J Food Sci; 2007 Jun; 72(5):C258-63. PubMed ID: 17995712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pro-oxidant/antioxidant behaviours of ascorbic acid, tocopherol, and plant extracts in n-3 highly unsaturated fatty acid rich oil-in-water emulsions.
    Jayasinghe C; Gotoh N; Wada S
    Food Chem; 2013 Dec; 141(3):3077-84. PubMed ID: 23871062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Caffeic Acid Phenethyl Ester and 4-Vinylcatechol on the Stabilities of Oil-in-Water Emulsions of Stripped Soybean Oil.
    Jia CH; Shin JA; Lee KT
    J Agric Food Chem; 2015 Dec; 63(47):10280-6. PubMed ID: 26492097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polar paradox revisited: analogous pairs of hydrophilic and lipophilic antioxidants in linoleic acid emulsion containing Cu(II).
    Bakır T; Sönmezoğlu I; Imer F; Apak R
    J Sci Food Agric; 2013 Aug; 93(10):2478-85. PubMed ID: 23520052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stabilization of L-ascorbic acid in aqueous solution and water-in-oil-in-water double emulsion by controlling pH and electrolyte concentration.
    Lee JS; Kim JW; Han SH; Chang IS; Kang HH; Lee OS; Oh SG; Suh KD
    J Cosmet Sci; 2004; 55(1):1-12. PubMed ID: 15037917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing the antioxidant and pro-oxidant activity of polyphenols in oil-in-water emulsions.
    Zhou L; Elias RJ
    J Agric Food Chem; 2012 Mar; 60(11):2906-15. PubMed ID: 22356204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible water-in-oil emulsion as a model to study ascorbic acid effect on lipid oxidation.
    Mosca M; Ceglie A; Ambrosone L
    J Phys Chem B; 2008 Apr; 112(15):4635-41. PubMed ID: 18358026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topical activity of ascorbic acid: from in vitro optimization to in vivo efficacy.
    Raschke T; Koop U; Düsing HJ; Filbry A; Sauermann K; Jaspers S; Wenck H; Wittern KP
    Skin Pharmacol Physiol; 2004; 17(4):200-6. PubMed ID: 15258452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation in fish oil enriched mayonnaise: ascorbic acid and low pH increase oxidative deterioration.
    Jacobsen C; Timm M; Meyer AS
    J Agric Food Chem; 2001 Aug; 49(8):3947-56. PubMed ID: 11513694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers.
    Apak R; Güçlü K; Ozyürek M; Bektaşoğlu B; Bener M
    Methods Mol Biol; 2010; 594():215-39. PubMed ID: 20072920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron prevents ascorbic acid (vitamin C) induced hydrogen peroxide accumulation in copper contaminated drinking water.
    Jansson PJ; Lindqvist C; Nordström T
    Free Radic Res; 2005 Nov; 39(11):1233-9. PubMed ID: 16298750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of sunflower oil qualities and antioxidants on oxidative stability on whey-based salad dressings.
    Pavlović MD; Pucarević M; Mićović V; Zivić M; Zlatanović S; Gorjanović S; Gvozdenović J
    Acta Chim Slov; 2012 Mar; 59(1):42-9. PubMed ID: 24061171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in-water emulsions.
    Hu M; McClements DJ; Decker EA
    J Agric Food Chem; 2003 Feb; 51(5):1435-9. PubMed ID: 12590494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide.
    Althoff F; Jugold A; Keppler F
    Chemosphere; 2010 Jun; 80(3):286-92. PubMed ID: 20444486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.