BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21961693)

  • 21. Gastric and esophageal cancers incidence mapping in golestan province, iran: using bayesian-gibbs sampling.
    Hosseintabar Marzoni AS; Moghimbeigi A; Faradmal J
    Osong Public Health Res Perspect; 2015 Apr; 6(2):100-5. PubMed ID: 25938019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling clustered binary data with excess zero clusters.
    Kwagyan J; Apprey V
    Stat Methods Med Res; 2018 Sep; 27(9):2641-2656. PubMed ID: 30103662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Spatial Distribution of Adult Obesity Prevalence in Denver County, Colorado: An Empirical Bayes Approach to Adjust EHR-Derived Small Area Estimates.
    Tabano DC; Bol K; Newcomer SR; Barrow JC; Daley MF
    EGEMS (Wash DC); 2017 Dec; 5(1):24. PubMed ID: 29881741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How does Poisson kriging compare to the popular BYM model for mapping disease risks?
    Goovaerts P; Gebreab S
    Int J Health Geogr; 2008 Feb; 7():6. PubMed ID: 18248676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gender and social disparities in esophagus cancer incidence in Iran, 2003-2009: a time trend province-level study.
    Kiadaliri AA
    Asian Pac J Cancer Prev; 2014; 15(2):623-7. PubMed ID: 24568468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial prediction of human brucellosis (HB) using a GIS-based adaptive neuro-fuzzy inference system (ANFIS).
    Babaie E; Alesheikh AA; Tabasi M
    Acta Trop; 2021 Aug; 220():105951. PubMed ID: 33979640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Statistical analysis of the incidence of some cancers in the province of Taranto 1999-2001].
    Graziano G; Bilancia M; Bisceglia L; de Nichilo G; Pollice A; Assennato G
    Epidemiol Prev; 2009; 33(1-2):37-44. PubMed ID: 19585874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling.
    Payne EH; Hardin JW; Egede LE; Ramakrishnan V; Selassie A; Gebregziabher M
    Stat Methods Med Res; 2017 Aug; 26(4):1802-1823. PubMed ID: 26031359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adjusting for sampling variability in sparse data: geostatistical approaches to disease mapping.
    Hampton KH; Serre ML; Gesink DC; Pilcher CD; Miller WC
    Int J Health Geogr; 2011 Oct; 10():54. PubMed ID: 21978359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The spatial distribution of colorectal cancer relative risk in Iran: a nationwide spatial study.
    Pourhoseingholi MA; Najafimehr H; Kavousi A; Pasharavesh L; Khanabadi B
    Gastroenterol Hepatol Bed Bench; 2020; 13(Suppl1):S40-S46. PubMed ID: 33585002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial Prevalence of Intellectual Disability and Related Socio-Demographic Factors in Iran, Using GWR: Case Study (2006).
    Goli A; Kermany FS; Askarian M
    Int J Prev Med; 2014 Mar; 5(3):313-25. PubMed ID: 24829716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping.
    Baptista H; Mendes JM; MacNab YC; Xavier M; Caldas-de-Almeida J
    Stat Methods Med Res; 2016 Aug; 25(4):1166-84. PubMed ID: 27566771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Managing distance and covariate information with point-based clustering.
    Whigham PA; de Graaf B; Srivastava R; Glue P
    BMC Med Res Methodol; 2016 Sep; 16(1):115. PubMed ID: 27586862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Odds ratios from logistic, geometric, Poisson, and negative binomial regression models.
    Sroka CJ; Nagaraja HN
    BMC Med Res Methodol; 2018 Oct; 18(1):112. PubMed ID: 30342488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Geographic information system-based analysis of the spatial and spatio-temporal distribution of zoonotic cutaneous leishmaniasis in Golestan Province, north-east of Iran.
    Mollalo A; Alimohammadi A; Shirzadi MR; Malek MR
    Zoonoses Public Health; 2015 Feb; 62(1):18-28. PubMed ID: 24628913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Association between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models.
    Mahara G; Wang C; Yang K; Chen S; Guo J; Gao Q; Wang W; Wang Q; Guo X
    Int J Environ Res Public Health; 2016 Nov; 13(11):. PubMed ID: 27827946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial analysis of Tuberculosis in Rio de Janeiro in the period from 2005 to 2008 and associated socioeconomic factors using micro data and global spatial regression models.
    Magalhães MA; Medronho RA
    Cien Saude Colet; 2017 Mar; 22(3):831-840. PubMed ID: 28300991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slope estimation for informatively right censored longitudinal data modelling the number of observations using geometric and Poisson distributions: application to renal transplant cohort.
    Jaffa MA; Lipsitz S; Woolson RF
    Stat Methods Med Res; 2015 Dec; 24(6):819-35. PubMed ID: 22143404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods.
    Wang Y; Kockelman KM
    Accid Anal Prev; 2013 Nov; 60():71-84. PubMed ID: 24036167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of Poisson kriging to the mapping of cholera and dysentery incidence in an endemic area of Bangladesh.
    Ali M; Goovaerts P; Nazia N; Haq MZ; Yunus M; Emch M
    Int J Health Geogr; 2006 Oct; 5():45. PubMed ID: 17038192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.