These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 21962127)
1. Ligand-induced structural evolution of Pt55 nanoparticles: amine versus thiol. Ryu JH; Han SS; Kim DH; Henkelman G; Lee HM ACS Nano; 2011 Nov; 5(11):8515-22. PubMed ID: 21962127 [TBL] [Abstract][Full Text] [Related]
2. A platinum shell for ultraslow ligand exchange: unmodified DNA adsorbing more stably on platinum than thiol and dithiol on gold. Zhou W; Ding J; Liu J Chem Commun (Camb); 2015 Aug; 51(60):12084-7. PubMed ID: 26121333 [TBL] [Abstract][Full Text] [Related]
3. Assemblies of polyvinylpyrrolidone-capped tetrahedral and spherical Pt nanoparticles in polyelectrolytes: hydrogen underpotential deposition and electrochemical characterization. Jaber S; Nasr P; Xin Y; Sleem F; Halaoui LI Phys Chem Chem Phys; 2013 Sep; 15(36):15223-33. PubMed ID: 23928658 [TBL] [Abstract][Full Text] [Related]
4. Activation of trans geometry in bifunctional mononuclear platinum complexes by a non-bulky methylamine ligand. Frybortova M; Novakova O; Stepankova J; Novohradsky V; Gibson D; Kasparkova J; Brabec V J Inorg Biochem; 2013 Sep; 126():46-54. PubMed ID: 23770803 [TBL] [Abstract][Full Text] [Related]
5. Colloidally prepared Pt nanowires versus impregnated Pt nanoparticles: comparison of adsorption and reaction properties. Haghofer A; Sonström P; Fenske D; Föttinger K; Schwarz S; Bernardi J; Al-Shamery K; Bäumer M; Rupprechter G Langmuir; 2010 Nov; 26(21):16330-8. PubMed ID: 20715880 [TBL] [Abstract][Full Text] [Related]
6. Cyclometallated Pt(II) and Pd(II) complexes with a trithiacrown ligand. Janzen DE; Vanderveer DG; Mehne LF; da Silva Filho DA; Brédas JL; Grant GJ Dalton Trans; 2008 Apr; (14):1872-82. PubMed ID: 18369494 [TBL] [Abstract][Full Text] [Related]
7. Functionalization of platinum nanoparticles with L-proline: simultaneous enhancements of catalytic activity and selectivity. Schrader I; Warneke J; Backenköhler J; Kunz S J Am Chem Soc; 2015 Jan; 137(2):905-12. PubMed ID: 25530504 [TBL] [Abstract][Full Text] [Related]
8. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core. Mednikov EG; Jewell MC; Dahl LF J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929 [TBL] [Abstract][Full Text] [Related]
9. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles. Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934 [TBL] [Abstract][Full Text] [Related]
10. Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization. Park JW; Shumaker-Parry JS ACS Nano; 2015 Feb; 9(2):1665-82. PubMed ID: 25625548 [TBL] [Abstract][Full Text] [Related]
12. Resistive random access memory utilizing ferritin protein with Pt nanoparticles. Uenuma M; Kawano K; Zheng B; Okamoto N; Horita M; Yoshii S; Yamashita I; Uraoka Y Nanotechnology; 2011 May; 22(21):215201. PubMed ID: 21451239 [TBL] [Abstract][Full Text] [Related]
13. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Tseng CW; Chang HY; Chang JY; Huang CC Nanoscale; 2012 Nov; 4(21):6823-30. PubMed ID: 23011048 [TBL] [Abstract][Full Text] [Related]
14. Platinum-nanoparticle-supported core--shell polymer nanospheres with unexpected water stability and facile further modification. Yuan C; Xu Y; Luo W; Zeng B; Qiu W; Liu J; Huang H; Dai L Nanotechnology; 2012 May; 23(17):175301. PubMed ID: 22481383 [TBL] [Abstract][Full Text] [Related]
15. A new electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt-Pd nanoparticles supported by graphene-multiwalled carbon nanotube composite. Yuan CX; Fan YR; Tao-Zhang ; Guo HX; Zhang JX; Wang YL; Shan DL; Lu XQ Biosens Bioelectron; 2014 Aug; 58():85-91. PubMed ID: 24632133 [TBL] [Abstract][Full Text] [Related]
16. Density functional investigation of the adsorption effects of PH Guedes-Sobrinho D; Chaves AS; Piotrowski MJ; Da Silva JLF J Chem Phys; 2017 Apr; 146(16):164304. PubMed ID: 28456198 [TBL] [Abstract][Full Text] [Related]
17. Controlled synthesis of Pt nanoparticles via seeding growth and their shape-dependent catalytic activity. Gong X; Yang Y; Zhang L; Zou C; Cai P; Chen G; Huang S J Colloid Interface Sci; 2010 Dec; 352(2):379-85. PubMed ID: 20851403 [TBL] [Abstract][Full Text] [Related]
18. Pt-S Bond-Mediated Nanoflares for High-Fidelity Intracellular Applications by Avoiding Thiol Cleavage. Qing Z; Luo G; Xing S; Zou Z; Lei Y; Liu J; Yang R Angew Chem Int Ed Engl; 2020 Aug; 59(33):14044-14048. PubMed ID: 32401400 [TBL] [Abstract][Full Text] [Related]
19. Ferromagnetism exhibited by nanoparticles of noble metals. Maitra U; Das B; Kumar N; Sundaresan A; Rao CN Chemphyschem; 2011 Aug; 12(12):2322-7. PubMed ID: 21744458 [TBL] [Abstract][Full Text] [Related]
20. One-pot formation of multifunctional Pt-conducting polymer intercalated nanostructures. Liu Y; Lu N; Poyraz S; Wang X; Yu Y; Scott J; Smith J; Kim MJ; Zhang X Nanoscale; 2013 May; 5(9):3872-9. PubMed ID: 23525158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]