These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21962171)

  • 1. A redox-gated slow-fast-stop molecular rotor.
    Yang CH; Prabhakar Ch; Huang SL; Lin YC; Tan WS; Misra NC; Sun WT; Yang JS
    Org Lett; 2011 Oct; 13(20):5632-5. PubMed ID: 21962171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-Gated Tristable Molecular Brakes of Geared Rotation.
    Tseng T; Lu HF; Kao CY; Chiu CW; Chao I; Prabhakar C; Yang JS
    J Org Chem; 2017 May; 82(10):5354-5366. PubMed ID: 28440080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a four-toothed molecular bevel gear with C2-symmetrical rotors.
    Kao CY; Hsu YT; Lu HF; Chao I; Huang SL; Lin YC; Sun WT; Yang JS
    J Org Chem; 2011 Jul; 76(14):5782-92. PubMed ID: 21627170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton grease: an acid accelerated molecular rotor.
    Dial BE; Pellechia PJ; Smith MD; Shimizu KD
    J Am Chem Soc; 2012 Feb; 134(8):3675-8. PubMed ID: 22320172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pentiptycene-derived molecular brake: photochemical E→Z and electrochemical Z→E switching of an enone module.
    Chen YC; Sun WT; Lu HF; Chao I; Huang GJ; Lin YC; Huang SL; Huang HH; Lin YD; Yang JS
    Chemistry; 2011 Jan; 17(4):1193-200. PubMed ID: 21243685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rotary molecular motor gated by electrical energy.
    Kao CY; Lu HF; Chao I; Yang JS
    Org Lett; 2014 Dec; 16(23):6100-3. PubMed ID: 25393685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guest-accelerated molecular rotor.
    Dial BE; Rasberry RD; Bullock BN; Smith MD; Pellechia PJ; Profeta S; Shimizu KD
    Org Lett; 2011 Jan; 13(2):244-7. PubMed ID: 21138315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-fast rotors for molecular machines and functional materials via halogen bonding: crystals of 1,4-bis(iodoethynyl)bicyclo[2.2.2]octane with distinct gigahertz rotation at two sites.
    Lemouchi C; Vogelsberg CS; Zorina L; Simonov S; Batail P; Brown S; Garcia-Garibay MA
    J Am Chem Soc; 2011 Apr; 133(16):6371-9. PubMed ID: 21469644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant Crystalline Molecular Rotors that Operate in the Solid State.
    Ando R; Sato-Tomita A; Ito H; Jin M
    Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202309694. PubMed ID: 37652896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multistage rotational speed changing molecular rotor regulated by pH and metal cations.
    Wu Y; Wang G; Li Q; Xiang J; Jiang H; Wang Y
    Nat Commun; 2018 May; 9(1):1953. PubMed ID: 29769548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning-up and driving a redox-active rotor.
    Kume S; Nishihara H
    Chem Commun (Camb); 2011 Jan; 47(1):415-7. PubMed ID: 20856986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular rotor of Cs2([18]crown-6)3 in the solid state coupled with the magnetism of [Ni(dmit)2].
    Akutagawa T; Shitagami K; Nishihara S; Takeda S; Hasegawa T; Nakamura T; Hosokoshi Y; Inoue K; Ikeuchi S; Miyazaki Y; Saito K
    J Am Chem Soc; 2005 Mar; 127(12):4397-402. PubMed ID: 15783222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved studies of individual molecular rotors.
    Jewell AD; Tierney HL; Baber AE; Iski EV; Laha MM; Sykes EC
    J Phys Condens Matter; 2010 Jul; 22(26):264006. PubMed ID: 21386463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral organic radical cation and dication. A reversible chiroptical redox switch based on stepwise transformation of optically active tetrakis(p-alkoxyphenyl)ethylenes to radical cations and dications.
    Mori T; Inoue Y
    J Phys Chem A; 2005 Mar; 109(12):2728-40. PubMed ID: 16833584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hydrogen bonds on the redox potential and electronic structure of the bacterial primary electron donor.
    Ivancich A; Artz K; Williams JC; Allen JP; Mattioli TA
    Biochemistry; 1998 Aug; 37(34):11812-20. PubMed ID: 9718304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A light-gated molecular brake with antilock and fluorescence turn-on alarm functions: application of singlet-state adiabatic cis → trans photoisomerization.
    Sun WT; Huang GJ; Huang SL; Lin YC; Yang JS
    J Org Chem; 2014 Jul; 79(13):6321-5. PubMed ID: 24921686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic coupling in tetraanisylarylenediamine mixed-valence systems: the interplay between bridge energy and geometric factors.
    Lambert C; Risko C; Coropceanu V; Schelter J; Amthor S; Gruhn NE; Durivage JC; Brédas JL
    J Am Chem Soc; 2005 Jun; 127(23):8508-16. PubMed ID: 15941286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of molecular chirality by circularly polarized light in cyclic azobenzene with a photoswitchable benzene rotor.
    Hashim PK; Thomas R; Tamaoki N
    Chemistry; 2011 Jun; 17(26):7304-12. PubMed ID: 21567494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The isolable cation radical of disilene: synthesis, characterization, and a reversible one-electron redox system.
    Inoue S; Ichinohe M; Sekiguchi A
    J Am Chem Soc; 2008 May; 130(19):6078-9. PubMed ID: 18422315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.