These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
49. Effect of colloidal particle size on adsorbed monodisperse and bidisperse monolayers. Rosenberg RT; Dan N Langmuir; 2011 Jul; 27(14):8729-34. PubMed ID: 21678922 [TBL] [Abstract][Full Text] [Related]
50. Electrolyte-added one-pot synthesis for producing monodisperse, micrometer-sized silica particles up to 7 microm. Nakabayashi H; Yamada A; Noba M; Kobayashi Y; Konno M; Nagao D Langmuir; 2010 May; 26(10):7512-5. PubMed ID: 20163080 [TBL] [Abstract][Full Text] [Related]
51. Water adsorption on hydrophilic and hydrophobic self-assembled monolayers as proxies for atmospheric surfaces. A grand canonical Monte Carlo simulation study. Szori M; Jedlovszky P; Roeselová M Phys Chem Chem Phys; 2010 May; 12(18):4604-16. PubMed ID: 20428540 [TBL] [Abstract][Full Text] [Related]
52. Silica nanoparticles at interfaces modulated by amphiphilic polymer and surfactant. Alves de Rezende C; Lee LT; Galembeck F Langmuir; 2008 Jul; 24(14):7346-53. PubMed ID: 18547078 [TBL] [Abstract][Full Text] [Related]
53. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly. Zhang X; Zhang J; Zhu D; Li X; Zhang X; Wang T; Yang B Langmuir; 2010 Dec; 26(23):17936-42. PubMed ID: 20973566 [TBL] [Abstract][Full Text] [Related]
54. Temperature- and pH-triggered reversible transfer of doubly responsive hairy particles between water and a hydrophobic ionic liquid. Horton JM; Bao C; Bai Z; Lodge TP; Zhao B Langmuir; 2011 Nov; 27(21):13324-34. PubMed ID: 21919469 [TBL] [Abstract][Full Text] [Related]
55. One-dimensional assembly of silica nanospheres mediated by block copolymer in liquid phase. Fukao M; Sugawara A; Shimojima A; Fan W; Arunagirinathan MA; Tsapatsis M; Okubo T J Am Chem Soc; 2009 Nov; 131(45):16344-5. PubMed ID: 19863065 [TBL] [Abstract][Full Text] [Related]
56. Multiwalled carbon nanotube deposition on model environmental surfaces. Chang X; Bouchard DC Environ Sci Technol; 2013 Sep; 47(18):10372-80. PubMed ID: 23957606 [TBL] [Abstract][Full Text] [Related]
57. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm). Karunakaran RG; Lu CH; Zhang Z; Yang S Langmuir; 2011 Apr; 27(8):4594-602. PubMed ID: 21355577 [TBL] [Abstract][Full Text] [Related]
58. Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting beta-NaYF(4):Yb(3+)/Er(3+) nanoparticles. Johnson NJ; Sangeetha NM; Boyer JC; van Veggel FC Nanoscale; 2010 May; 2(5):771-7. PubMed ID: 20648323 [TBL] [Abstract][Full Text] [Related]
59. Quantitative equivalence between polymer nanocomposites and thin polymer films. Bansal A; Yang H; Li C; Cho K; Benicewicz BC; Kumar SK; Schadler LS Nat Mater; 2005 Sep; 4(9):693-8. PubMed ID: 16086021 [TBL] [Abstract][Full Text] [Related]
60. Reversible conversion of water-droplet mobility from rollable to pinned on a superhydrophobic functionalized carbon nanotube film. Yang J; Zhang Z; Men X; Xu X; Zhu X J Colloid Interface Sci; 2010 Jun; 346(1):241-7. PubMed ID: 20223465 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]