These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 21962215)
61. Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. Bogdanov M; Dowhan W EMBO J; 1998 Sep; 17(18):5255-64. PubMed ID: 9736605 [TBL] [Abstract][Full Text] [Related]
62. Topology of polytopic membrane protein subdomains is dictated by membrane phospholipid composition. Wang X; Bogdanov M; Dowhan W EMBO J; 2002 Nov; 21(21):5673-81. PubMed ID: 12411485 [TBL] [Abstract][Full Text] [Related]
63. Effects of lipids on the interaction of SecA with model membranes. Ahn T; Kim JS; Lee BC; Yun CH Arch Biochem Biophys; 2001 Nov; 395(1):14-20. PubMed ID: 11673860 [TBL] [Abstract][Full Text] [Related]
64. Effect of physical parameters on the main phase transition of supported lipid bilayers. Seeger HM; Marino G; Alessandrini A; Facci P Biophys J; 2009 Aug; 97(4):1067-76. PubMed ID: 19686654 [TBL] [Abstract][Full Text] [Related]
65. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. Bogdanov M; Heacock PN; Dowhan W EMBO J; 2002 May; 21(9):2107-16. PubMed ID: 11980707 [TBL] [Abstract][Full Text] [Related]
66. Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane-Langmuir monolayer approach. Broniatowski M; Mastalerz P; Flasiński M Biochim Biophys Acta; 2015 Feb; 1848(2):469-76. PubMed ID: 25450351 [TBL] [Abstract][Full Text] [Related]
67. Mapping phase diagrams of supported lipid bilayers by atomic force microscopy. Borrell JH; Montero MT; Domènech Ò Microsc Res Tech; 2017 Jan; 80(1):4-10. PubMed ID: 27001606 [TBL] [Abstract][Full Text] [Related]
68. Interaction of lipopolysaccharide and phospholipid in mixed membranes: solid-state 31P-NMR spectroscopic and microscopic investigations. Nomura K; Inaba T; Morigaki K; Brandenburg K; Seydel U; Kusumoto S Biophys J; 2008 Aug; 95(3):1226-38. PubMed ID: 18456825 [TBL] [Abstract][Full Text] [Related]
69. A model of hydrogen bond formation in phosphatidylethanolamine bilayers. Pink DA; McNeil S; Quinn B; Zuckermann MJ Biochim Biophys Acta; 1998 Jan; 1368(2):289-305. PubMed ID: 9459606 [TBL] [Abstract][Full Text] [Related]
70. Polymorphism of pyridinium amphiphiles for gene delivery: influence of ionic strength, helper lipid content, and plasmid DNA complexation. Scarzello M; Chupin V; Wagenaar A; Stuart MC; Engberts JB; Hulst R Biophys J; 2005 Mar; 88(3):2104-13. PubMed ID: 15613636 [TBL] [Abstract][Full Text] [Related]
71. Lipid-lipid interactions of Escherichia coli mimetic inner membrane at human physiological temperature. Hoyo J; Torrent-Burgués J; Tzanov T Gen Physiol Biophys; 2020 Mar; 39(2):195-202. PubMed ID: 32329447 [TBL] [Abstract][Full Text] [Related]
72. Correlation of AFM and SFA measurements concerning the stability of supported lipid bilayers. Benz M; Gutsmann T; Chen N; Tadmor R; Israelachvili J Biophys J; 2004 Feb; 86(2):870-9. PubMed ID: 14747322 [TBL] [Abstract][Full Text] [Related]
74. Towards the understanding of the behavior of single-chained ether phospholipids in model biomembranes: interactions with phosphatidylethanolamines in Langmuir monolayers. Hąc-Wydro K; Flasiński M; Wydro P; Dynarowicz-Łątka P Colloids Surf B Biointerfaces; 2012 Sep; 97():162-70. PubMed ID: 22609598 [TBL] [Abstract][Full Text] [Related]
75. Roles of histidine charge and cardiolipin in membrane disruption by antimicrobial peptides Gaduscidin-1 and Gaduscidin-2. Sandhu G; Morrow MR; Booth V Biochim Biophys Acta Biomembr; 2020 Nov; 1862(11):183444. PubMed ID: 32822647 [TBL] [Abstract][Full Text] [Related]
76. Physical states and thermodynamic properties of model gram-negative bacterial inner membranes. Hoyo J; Torrent-Burgués J; Tzanov T Chem Phys Lipids; 2019 Jan; 218():57-64. PubMed ID: 30527783 [TBL] [Abstract][Full Text] [Related]
77. In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein. Vitrac H; Bogdanov M; Dowhan W Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9338-43. PubMed ID: 23690595 [TBL] [Abstract][Full Text] [Related]
78. Observation of liposomes of differing lipid composition in aqueous medium by means of atomic force microscopy. Takechi-Haraya Y; Sakai-Kato K; Abe Y; Kawanishi T; Okuda H; Goda Y Microscopy (Oxf); 2016 Aug; 65(4):383-9. PubMed ID: 27020464 [TBL] [Abstract][Full Text] [Related]
79. Modeling cell membrane perturbation by molecules designed for transmembrane electron transfer. Hinks J; Wang Y; Poh WH; Donose BC; Thomas AW; Wuertz S; Loo SC; Bazan GC; Kjelleberg S; Mu Y; Seviour T Langmuir; 2014 Mar; 30(9):2429-40. PubMed ID: 24499294 [TBL] [Abstract][Full Text] [Related]
80. Adsorption of ruthenium red to phospholipid membranes. Voelker D; Smejtek P Biophys J; 1996 Feb; 70(2):818-30. PubMed ID: 8789099 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]