These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 21962706)
1. Peculiarities of a novel bioenzymatic reactor using carbon nanotubes as enzyme activity enhancers: application to arginase. André C; Agiovlasileti D; Guillaume YC Talanta; 2011 Oct; 85(5):2703-6. PubMed ID: 21962706 [TBL] [Abstract][Full Text] [Related]
2. Non-covalent functionalisation of monolithic silica for the development of carbon nanotube HPLC stationary phases. André C; Lenancker G; Guillaume YC Talanta; 2012 Sep; 99():580-5. PubMed ID: 22967597 [TBL] [Abstract][Full Text] [Related]
3. Experimental studies of OH° radical/pressure dependence of arginase activity using a molecular chromatography approach. André C; Ibrahim F; Gharbi T; Herlem G; Guillaume YC J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Oct; 878(28):2826-30. PubMed ID: 20863773 [TBL] [Abstract][Full Text] [Related]
4. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Cang-Rong JT; Pastorin G Nanotechnology; 2009 Jun; 20(25):255102. PubMed ID: 19487802 [TBL] [Abstract][Full Text] [Related]
5. Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study. Wang ZG; Ke BB; Xu ZK Biotechnol Bioeng; 2007 Jul; 97(4):708-20. PubMed ID: 17171660 [TBL] [Abstract][Full Text] [Related]
6. A new arginase enzymatic reactor: development and application for the research of plant-derived inhibitors. André C; Herlem G; Gharbi T; Guillaume YC J Pharm Biomed Anal; 2011 Apr; 55(1):48-53. PubMed ID: 21310573 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for mu-HPLC and capillary electrochromatography. Li Y; Chen Y; Xiang R; Ciuparu D; Pfefferle LD; Horváth C; Wilkins JA Anal Chem; 2005 Mar; 77(5):1398-406. PubMed ID: 15732924 [TBL] [Abstract][Full Text] [Related]
8. Optimization of a trypsin-bioreactor coupled with high-performance liquid chromatography-electrospray ionization tandem mass spectrometry for quality control of biotechnological drugs. Temporini C; Perani E; Mancini F; Bartolini M; Calleri E; Lubda D; Felix G; Andrisano V; Massolini G J Chromatogr A; 2006 Jul; 1120(1-2):121-31. PubMed ID: 16472537 [TBL] [Abstract][Full Text] [Related]
9. Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. Wang L; Wei L; Chen Y; Jiang R J Biotechnol; 2010 Oct; 150(1):57-63. PubMed ID: 20630484 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of a novel composite imprinted material based on multiwalled carbon nanotubes as a selective melamine absorbent. Zhang H; Zhang Z; Hu Y; Yang X; Yao S J Agric Food Chem; 2011 Feb; 59(4):1063-71. PubMed ID: 21247175 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the impact of single-walled carbon nanotubes in an activated sludge wastewater reactor. Yin Y; Zhang X Water Sci Technol; 2008; 58(3):623-8. PubMed ID: 18725731 [TBL] [Abstract][Full Text] [Related]
12. Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. Sinani VA; Gheith MK; Yaroslavov AA; Rakhnyanskaya AA; Sun K; Mamedov AA; Wicksted JP; Kotov NA J Am Chem Soc; 2005 Mar; 127(10):3463-72. PubMed ID: 15755166 [TBL] [Abstract][Full Text] [Related]
13. In situ surface plasmon resonance investigation of the assembly process of multiwalled carbon nanotubes on an alkanethiol self-assembled monolayer for efficient protein immobilization and detection. Hu W; Lu Z; Liu Y; Li CM Langmuir; 2010 Jun; 26(11):8386-91. PubMed ID: 20201594 [TBL] [Abstract][Full Text] [Related]
14. A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel. Zamfir LG; Rotariu L; Bala C Biosens Bioelectron; 2011 Apr; 26(8):3692-5. PubMed ID: 21377346 [TBL] [Abstract][Full Text] [Related]
15. Development of a liquid chromatographic system with fluorescent detection for beta-secretase immobilized enzyme reactor on-line enzymatic studies. Mancini F; Andrisano V J Pharm Biomed Anal; 2010 Jul; 52(3):355-61. PubMed ID: 19674859 [TBL] [Abstract][Full Text] [Related]
16. Biochromatographic framework for analyzing magnesium chloride salt dependence on nor-NOHA binding to arginase enzyme. Bagnost T; Guillaume YC; Thomassin M; Berthelot A; Demougeot C; André C J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Sep; 873(1):37-40. PubMed ID: 18723409 [TBL] [Abstract][Full Text] [Related]
17. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. Fang GZ; He JX; Wang S J Chromatogr A; 2006 Sep; 1127(1-2):12-7. PubMed ID: 16820156 [TBL] [Abstract][Full Text] [Related]
18. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Steiner SA; Baumann TF; Kong J; Satcher JH; Dresselhaus MS Langmuir; 2007 Apr; 23(9):5161-6. PubMed ID: 17381146 [TBL] [Abstract][Full Text] [Related]
19. Magnetic solid-phase extraction based on magnetic carbon nanotube for the determination of estrogens in milk. Ding J; Gao Q; Li XS; Huang W; Shi ZG; Feng YQ J Sep Sci; 2011 Sep; 34(18):2498-504. PubMed ID: 21780288 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of arginase and its application in an enzymatic chromatographic column: thermodynamic studies of nor-NOHA/arginase binding and role of the reactive histidine residue. Bagnost T; Guillaume YC; Thomassin M; Robert JF; Berthelot A; Xicluna A; André C J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Sep; 856(1-2):113-20. PubMed ID: 17588506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]