These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2196279)

  • 1. Two unrelated patients with familial hyperproinsulinemia due to a mutation substituting histidine for arginine at position 65 in the proinsulin molecule: identification of the mutation by direct sequencing of genomic deoxyribonucleic acid amplified by polymerase chain reaction.
    Barbetti F; Raben N; Kadowaki T; Cama A; Accili D; Gabbay KH; Merenich JA; Taylor SI; Roth J
    J Clin Endocrinol Metab; 1990 Jul; 71(1):164-9. PubMed ID: 2196279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperproinsulinemia in a three-generation Caucasian family due to mutant proinsulin (Arg65-His) not associated with imparied glucose tolerance: the contribution of mutant proinsulin to insulin bioactivity.
    Röder ME; Vissing H; Nauck MA
    J Clin Endocrinol Metab; 1996 Apr; 81(4):1634-40. PubMed ID: 8636380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Point mutation in a family with hyperproinsulinemia detected by single stranded conformational polymorphism.
    Nakashima N; Sakamoto N; Umeda F; Hashimoto T; Hisatomi A; Umemura T; Aso N; Sakaki Y; Nawata H
    J Clin Endocrinol Metab; 1993 Mar; 76(3):633-6. PubMed ID: 8445019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posttranslational cleavage of proinsulin is blocked by a point mutation in familial hyperproinsulinemia.
    Shibasaki Y; Kawakami T; Kanazawa Y; Akanuma Y; Takaku F
    J Clin Invest; 1985 Jul; 76(1):378-80. PubMed ID: 4019786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Familial hyperproinsulinaemia due to a mutation substituting histidine for arginine at position 65 in proinsulin: identification of the mutation by restriction enzyme mapping.
    Collinet M; Berthelon M; Bénit P; Laborde K; Desbuquois B; Munnich A; Robert JJ
    Eur J Pediatr; 1998 Jun; 157(6):456-60. PubMed ID: 9667398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel point mutation in the human insulin gene giving rise to hyperproinsulinemia (proinsulin Kyoto).
    Yano H; Kitano N; Morimoto M; Polonsky KS; Imura H; Seino Y
    J Clin Invest; 1992 Jun; 89(6):1902-7. PubMed ID: 1601997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel point mutation in the insulin gene giving rise to hyperproinsulinemia.
    Warren-Perry MG; Manley SE; Ostrega D; Polonsky K; Mussett S; Brown P; Turner RC
    J Clin Endocrinol Metab; 1997 May; 82(5):1629-31. PubMed ID: 9141561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Familial hyperproinsulinemia. Two cohorts secreting indistinguishable type II intermediates of proinsulin conversion.
    Robbins DC; Shoelson SE; Rubenstein AH; Tager HS
    J Clin Invest; 1984 Mar; 73(3):714-9. PubMed ID: 6368587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Familial hyperproinsulinemia associated with NIDDM. A case study.
    Oohashi H; Ohgawara H; Nanjo K; Tasaka Y; Cao QP; Chan SJ; Rubenstein AH; Steiner DF; Omori Y
    Diabetes Care; 1993 Oct; 16(10):1340-6. PubMed ID: 8269791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Familial hyperproinsulinemia due to a proposed defect in conversion of proinsulin to insulin.
    Gruppuso PA; Gorden P; Kahn CR; Cornblath M; Zeller WP; Schwartz R
    N Engl J Med; 1984 Sep; 311(10):629-34. PubMed ID: 6382002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperproinsulinemia in a family with a proposed defect in conversion is linked to the insulin gene.
    Elbein SC; Gruppuso P; Schwartz R; Skolnick M; Permutt MA
    Diabetes; 1985 Aug; 34(8):821-4. PubMed ID: 2991050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elephantfish proinsulin possesses a monobasic processing site.
    Gieseg MA; Swarbrick PA; Perko L; Powell RJ; Cutfield JF
    Gen Comp Endocrinol; 1997 Nov; 108(2):199-208. PubMed ID: 9356216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Insulin gene and its abnormality].
    Kobayashi M
    Nihon Naika Gakkai Zasshi; 1991 Aug; 80(8):1243-7. PubMed ID: 1919243
    [No Abstract]   [Full Text] [Related]  

  • 14. A mutation in the B chain coding region is associated with impaired proinsulin conversion in a family with hyperproinsulinemia.
    Chan SJ; Seino S; Gruppuso PA; Schwartz R; Steiner DF
    Proc Natl Acad Sci U S A; 1987 Apr; 84(8):2194-7. PubMed ID: 3470784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Insulinopathy].
    Haruta T; Kobayashi M
    Nihon Rinsho; 1998 Jan; 56 Suppl 3():573-8. PubMed ID: 9513480
    [No Abstract]   [Full Text] [Related]  

  • 16. Two novel mutations in the vasopressin V2 receptor gene in unrelated Japanese kindreds with nephrogenic diabetes insipidus.
    Tsukaguchi H; Matsubara H; Aritaki S; Kimura T; Abe S; Inada M
    Biochem Biophys Res Commun; 1993 Dec; 197(2):1000-10. PubMed ID: 8267567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four different mutations in codon 28 of alpha spectrin are associated with structurally and functionally abnormal spectrin alpha I/74 in hereditary elliptocytosis.
    Coetzer TL; Sahr K; Prchal J; Blacklock H; Peterson L; Koler R; Doyle J; Manaster J; Palek J
    J Clin Invest; 1991 Sep; 88(3):743-9. PubMed ID: 1679439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Hyperproinsulinemia].
    Kobayashi M
    Nihon Rinsho; 1991 Feb; 49 Suppl():711-20. PubMed ID: 2033868
    [No Abstract]   [Full Text] [Related]  

  • 19. Hyperproinsulinemia in Japan.
    Kanazawa Y; Kuzuya N; Takeuchi Y; Kubo F; Yamamoto W; Noda M
    Diabetes Res Clin Pract; 1994 Oct; 24 Suppl():S143-4. PubMed ID: 7859596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and analysis of the gene encoding hummingbird proinsulin.
    Fan L; Gardner P; Chan SJ; Steiner DF
    Gen Comp Endocrinol; 1993 Jul; 91(1):25-30. PubMed ID: 8405887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.