These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 21963171)
1. Biodegradation of chlorobenzoic acids by ligninolytic fungi. Muzikář M; Křesinová Z; Svobodová K; Filipová A; Cvančarová M; Cajthamlová K; Cajthaml T J Hazard Mater; 2011 Nov; 196():386-94. PubMed ID: 21963171 [TBL] [Abstract][Full Text] [Related]
2. Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Cvančarová M; Křesinová Z; Filipová A; Covino S; Cajthaml T Chemosphere; 2012 Sep; 88(11):1317-23. PubMed ID: 22546633 [TBL] [Abstract][Full Text] [Related]
3. Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Cajthaml T; Kresinová Z; Svobodová K; Möder M Chemosphere; 2009 May; 75(6):745-50. PubMed ID: 19243809 [TBL] [Abstract][Full Text] [Related]
4. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Byss M; Elhottová D; Tříska J; Baldrian P Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639 [TBL] [Abstract][Full Text] [Related]
5. The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol. Soares A; Jonasson K; Terrazas E; Guieysse B; Mattiasson B Appl Microbiol Biotechnol; 2005 Mar; 66(6):719-25. PubMed ID: 15735968 [TBL] [Abstract][Full Text] [Related]
6. Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: in vivo and in vitro mechanistic study-evidence for P-450 involvement in the transformation. Stella T; Covino S; Křesinová Z; D'Annibale A; Petruccioli M; Čvančarová M; Cajthaml T J Hazard Mater; 2013 Sep; 260():975-83. PubMed ID: 23892164 [TBL] [Abstract][Full Text] [Related]
7. Bioremediation of long-term PCB-contaminated soil by white-rot fungi. Stella T; Covino S; Čvančarová M; Filipová A; Petruccioli M; D'Annibale A; Cajthaml T J Hazard Mater; 2017 Feb; 324(Pt B):701-710. PubMed ID: 27894756 [TBL] [Abstract][Full Text] [Related]
8. Degradation of aromatic hydrocarbons by white-rot fungi in a historically contaminated soil. D'Annibale A; Ricci M; Leonardi V; Quaratino D; Mincione E; Petruccioli M Biotechnol Bioeng; 2005 Jun; 90(6):723-31. PubMed ID: 15858792 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of endocrine-disrupting phthalates by Pleurotus ostreatus. Hwang SS; Choi HT; Song HG J Microbiol Biotechnol; 2008 Apr; 18(4):767-72. PubMed ID: 18467874 [TBL] [Abstract][Full Text] [Related]
10. Determination of 15 isomers of chlorobenzoic acid in soil samples using accelerated sample extraction followed by liquid chromatography. Křesinová Z; Muzikář M; Olšovská J; Cajthaml T Talanta; 2011 May; 84(4):1141-7. PubMed ID: 21530790 [TBL] [Abstract][Full Text] [Related]
11. Genomic damage induced in tobacco plants by chlorobenzoic acids--metabolic products of polychlorinated biphenyls. Gichner T; Lovecka P; Vrchotova B Mutat Res; 2008 Dec; 657(2):140-5. PubMed ID: 18835364 [TBL] [Abstract][Full Text] [Related]
12. Biotransformation of the antibiotic agent flumequine by ligninolytic fungi and residual antibacterial activity of the transformation mixtures. Cvančarová M; Moeder M; Filipová A; Reemtsma T; Cajthaml T Environ Sci Technol; 2013 Dec; 47(24):14128-36. PubMed ID: 24261869 [TBL] [Abstract][Full Text] [Related]
13. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi--Metabolites, enzymes and residual antibacterial activity. Čvančarová M; Moeder M; Filipová A; Cajthaml T Chemosphere; 2015 Oct; 136():311-20. PubMed ID: 25592459 [TBL] [Abstract][Full Text] [Related]
14. Ability of fungi to degrade synthetic polymer nylon-6. Friedrich J; Zalar P; Mohorcic M; Klun U; Krzan A Chemosphere; 2007 May; 67(10):2089-95. PubMed ID: 17257652 [TBL] [Abstract][Full Text] [Related]
15. Extracellular enzyme activities of Bjerkandera adusta R59 soil strain, capable of daunomycin and humic acids degradation. Belcarz A; Ginalska G; Kornillowicz-Kowalska T Appl Microbiol Biotechnol; 2005 Sep; 68(5):686-94. PubMed ID: 15711793 [TBL] [Abstract][Full Text] [Related]
16. Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus. Cajthaml T; Erbanová P; Sasek V; Moeder M Chemosphere; 2006 Jul; 64(4):560-4. PubMed ID: 16403417 [TBL] [Abstract][Full Text] [Related]
17. Valorizing fungal diversity for the degradation of fluoroquinolones. Akrout I; Staita K; Zouari-Mechichi H; Ghariani B; Khmaissa M; Navarro D; Doan A; Albert Q; Faulds C; Sciara G; Record E; Mechichi T Heliyon; 2024 May; 10(10):e30611. PubMed ID: 38799738 [TBL] [Abstract][Full Text] [Related]
18. Ecotoxicological assessment of PAHs and their dead-end metabolites after degradation by Mycobacterium sp. strain SNP11. Pagnout C; Rast C; Veber AM; Poupin P; Férard JF Ecotoxicol Environ Saf; 2006 Oct; 65(2):151-8. PubMed ID: 16753216 [TBL] [Abstract][Full Text] [Related]
19. An anamorph of the white-rot fungus Bjerkandera adusta capable of colonizing and degrading compact disc components. Romero E; Speranza M; García-Guinea J; Martínez AT; Martínez MJ FEMS Microbiol Lett; 2007 Oct; 275(1):122-9. PubMed ID: 17854471 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Aggelis G; Ehaliotis C; Nerud F; Stoychev I; Lyberatos G; Zervakis GI Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):353-60. PubMed ID: 12111170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]