BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 21963173)

  • 1. Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and Hfx Zr 1-x O2 nanoparticles with natural organic matter reveal differences dependent on crystal structure.
    Navarro DA; Depner SW; Watson DF; Aga DS; Banerjee S
    J Hazard Mater; 2011 Nov; 196():302-10. PubMed ID: 21963173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of humic acid with nanosized inorganic oxides.
    Yang K; Lin D; Xing B
    Langmuir; 2009 Apr; 25(6):3571-6. PubMed ID: 19708146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter.
    Chekli L; Phuntsho S; Roy M; Shon HK
    Sci Total Environ; 2013 Sep; 461-462():19-27. PubMed ID: 23712112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter.
    Ghosh S; Mashayekhi H; Pan B; Bhowmik P; Xing B
    Langmuir; 2008 Nov; 24(21):12385-91. PubMed ID: 18823134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.
    Stankus DP; Lohse SE; Hutchison JE; Nason JA
    Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of phenanthrene by nanosized alumina coated with sequentially extracted humic acids.
    Yang K; Zhu L; Xing B
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):410-9. PubMed ID: 19468767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles.
    Deonarine A; Lau BL; Aiken GR; Ryan JN; Hsu-Kim H
    Environ Sci Technol; 2011 Apr; 45(8):3217-23. PubMed ID: 21291228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and catalysis of di- and tetranuclear metal sandwich-type silicotungstates [(gamma-SiW10O36)2M2(mu-OH)2]10- and [(gamma-SiW10O36)2M4(mu4-O)(mu-OH)6]8- (M = Zr or Hf).
    Kikukawa Y; Yamaguchi S; Tsuchida K; Nakagawa Y; Uehara K; Yamaguchi K; Mizuno N
    J Am Chem Soc; 2008 Apr; 130(16):5472-8. PubMed ID: 18370387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes.
    Ghosh S; Jiang W; McClements JD; Xing B
    Langmuir; 2011 Jul; 27(13):8036-43. PubMed ID: 21650201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman and Brillouin scattering spectroscopy studies of atomic layer-deposited ZrO(2) and HfO(2) thin films.
    Tkachev SN; Manghnani MH; Niilisk A; Aarik J; Mändar H
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2434-8. PubMed ID: 16029867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids.
    Ghosh S; Mashayekhi H; Bhowmik P; Xing B
    Langmuir; 2010 Jan; 26(2):873-9. PubMed ID: 19813721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, size control, surface deposition, and catalytic reactivity of hydrophobic corrolazine nanoparticles in an aqueous environment.
    Cho K; Kerber WD; Lee SR; Wan A; Batteas JD; Goldberg DP
    Inorg Chem; 2010 Sep; 49(18):8465-73. PubMed ID: 20735145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partitioning of hydrophobic CdSe quantum dots into aqueous dispersions of humic substances: influence of capping-group functionality on the phase-transfer mechanism.
    Navarro DA; Banerjee S; Aga DS; Watson DF
    J Colloid Interface Sci; 2010 Aug; 348(1):119-28. PubMed ID: 20451211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of the surface structure, acidity, and catalytic performance of tungstated zirconia prepared from crystalline zirconia or amorphous zirconium oxyhydroxide.
    Lebarbier V; Clet G; Houalla M
    J Phys Chem B; 2006 Jul; 110(28):13905-11. PubMed ID: 16836340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of cadmium(II) on humic acid coated titanium dioxide.
    Chen Q; Yin D; Zhu S; Hu X
    J Colloid Interface Sci; 2012 Feb; 367(1):241-8. PubMed ID: 22047914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles.
    Field JA; Luna-Velasco A; Boitano SA; Shadman F; Ratner BD; Barnes C; Sierra-Alvarez R
    Chemosphere; 2011 Sep; 84(10):1401-7. PubMed ID: 21605889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions.
    Hu JD; Zevi Y; Kou XM; Xiao J; Wang XJ; Jin Y
    Sci Total Environ; 2010 Jul; 408(16):3477-89. PubMed ID: 20421125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles.
    Furman O; Usenko S; Lau BL
    Environ Sci Technol; 2013 Feb; 47(3):1349-56. PubMed ID: 23298221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipid membrane encapsulation of nanoparticles for surface-enhanced Raman scattering.
    Ip S; MacLaughlin CM; Gunari N; Walker GC
    Langmuir; 2011 Jun; 27(11):7024-33. PubMed ID: 21528851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.