BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21963181)

  • 1. Improving performance of a five-zone simulated moving bed chromatography for ternary separation by simultaneous use of partial-feeding and partial-closing of the product port in charge of collecting the intermediate-affinity solute molecules.
    Mun S
    J Chromatogr A; 2011 Nov; 1218(44):8060-74. PubMed ID: 21963181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced performance of a three-zone simulated moving bed chromatography for separation of succinic acid and lactic acid by simultaneous use of port-location rearrangement and partial-feeding.
    Mun S
    J Chromatogr A; 2014 Jul; 1350():72-82. PubMed ID: 24881495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial port-closing strategy for obtaining high throughput or high purities in a four-zone simulated moving bed chromatography for binary separation.
    Mun S
    J Chromatogr A; 2010 Oct; 1217(42):6522-30. PubMed ID: 20837353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategy of rearranging the port locations in a three-zone simulated moving bed chromatography for binary separation with linear isotherms.
    Mun S
    J Chromatogr A; 2012 Mar; 1230():100-9. PubMed ID: 22333683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the relative merits of port-location rearrangement and partial-feeding as the strategy for improving the performances of a three-zone simulated moving chromatography for separation of succinic acid and lactic acid.
    Mun S
    J Chromatogr A; 2014 May; 1341():8-14. PubMed ID: 24685161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial-discard strategy for obtaining high purity products using simulated moving bed chromatography.
    Bae YS; Lee CH
    J Chromatogr A; 2006 Jul; 1122(1-2):161-73. PubMed ID: 16690063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on a pseudo-simulated moving bed with solvent gradient for ternary separations.
    Wei F; Shen B; Chen M; Zhao Y
    J Chromatogr A; 2012 Feb; 1225():99-106. PubMed ID: 22251885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of simulated moving bed chromatography with fractionation and feedback: part II. Fractionation of both outlets.
    Li S; Kawajiri Y; Raisch J; Seidel-Morgenstern A
    J Chromatogr A; 2010 Aug; 1217(33):5349-57. PubMed ID: 20619841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backfill-simulated moving bed operation for improving the separation performance of simulated moving bed chromatography.
    Kim KM; Lee CH
    J Chromatogr A; 2013 Oct; 1311():79-89. PubMed ID: 24007684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of pseudo-simulated moving bed process with multi-objective optimization for the separation of a ternary mixture: linear isotherms.
    Lee JW; Wankat PC
    J Chromatogr A; 2010 May; 1217(20):3418-26. PubMed ID: 20363474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of using simulated moving bed chromatography to separate intermediately eluting target compounds.
    Nowak J; Antos D; Seidel-Morgenstern A
    J Chromatogr A; 2012 Aug; 1253():58-70. PubMed ID: 22840817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of simulated moving bed chromatography with fractionation and feedback: part I. Fractionation of one outlet.
    Li S; Kawajiri Y; Raisch J; Seidel-Morgenstern A
    J Chromatogr A; 2010 Aug; 1217(33):5337-48. PubMed ID: 20619840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evaluation of the effect of a modified port-location mode on the performance of a three-zone simulated moving-bed process for the separation of valine and isoleucine.
    Park C; Nam HG; Kim PH; Mun S
    J Sep Sci; 2014 Jun; 37(11):1215-21. PubMed ID: 24634401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving performance of a tandem simulated moving bed process for sugar separation by making a difference in the adsorbents and the column lengths of the two subordinate simulated moving bed units.
    Mun S
    J Chromatogr A; 2013 Feb; 1277():48-57. PubMed ID: 23332306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of various ternary simulated moving bed separation schemes by multi-objective optimization.
    Agrawal G; Kawajiri Y
    J Chromatogr A; 2012 May; 1238():105-13. PubMed ID: 22498352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-port operation in three-zone simulated moving bed chromatography.
    Kim KM; Song JY; Lee CH
    J Chromatogr A; 2014 May; 1340():79-89. PubMed ID: 24661870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermittent simulated moving bed chromatography: 1. Design criteria and cyclic steady-state.
    Katsuo S; Mazzotti M
    J Chromatogr A; 2010 Feb; 1217(8):1354-61. PubMed ID: 20079906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a non-triangular separation region for improving the performance of a three-zone simulated moving bed chromatography for binary separation with linear isotherms.
    Mun S
    J Chromatogr A; 2012 Sep; 1256():46-57. PubMed ID: 22901299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of D-psicose and D-fructose using simulated moving bed chromatography.
    Nguyen VD; Le TH; Kim JI; Lee JW; Koo YM
    J Sep Sci; 2009 Jun; 32(11):1987-95. PubMed ID: 19479773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous-mode separation of fucose and 2,3-butanediol using a three-zone simulated moving bed process and its performance improvement by using partial extract-collection, partial extract-recycle, and partial desorbent-port closing.
    Lee CG; Jo CY; Song YJ; Mun S
    J Chromatogr A; 2018 Dec; 1579():49-59. PubMed ID: 30389210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.