These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1660 related articles for article (PubMed ID: 21963238)
1. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Chu C; Qu K; Zhong FL; Artandi SE; Chang HY Mol Cell; 2011 Nov; 44(4):667-78. PubMed ID: 21963238 [TBL] [Abstract][Full Text] [Related]
2. Chromatin isolation by RNA purification (ChIRP). Chu C; Quinn J; Chang HY J Vis Exp; 2012 Mar; (61):. PubMed ID: 22472705 [TBL] [Abstract][Full Text] [Related]
3. Mapping Chromatin Occupancy of Hwang J; Kang X; Wolf C; Touma M Cells; 2023 Dec; 12(24):. PubMed ID: 38132125 [TBL] [Abstract][Full Text] [Related]
4. Long noncoding RNA in genome regulation: prospects and mechanisms. Hung T; Chang HY RNA Biol; 2010; 7(5):582-5. PubMed ID: 20930520 [TBL] [Abstract][Full Text] [Related]
5. Progressive polycomb assembly on H3K27me3 compartments generates polycomb bodies with developmentally regulated motion. Cheutin T; Cavalli G PLoS Genet; 2012 Jan; 8(1):e1002465. PubMed ID: 22275876 [TBL] [Abstract][Full Text] [Related]
6. The genomic binding sites of a noncoding RNA. Simon MD; Wang CI; Kharchenko PV; West JA; Chapman BA; Alekseyenko AA; Borowsky ML; Kuroda MI; Kingston RE Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20497-502. PubMed ID: 22143764 [TBL] [Abstract][Full Text] [Related]
8. Long noncoding RNA as modular scaffold of histone modification complexes. Tsai MC; Manor O; Wan Y; Mosammaparast N; Wang JK; Lan F; Shi Y; Segal E; Chang HY Science; 2010 Aug; 329(5992):689-93. PubMed ID: 20616235 [TBL] [Abstract][Full Text] [Related]
9. Enhanced nucleotide chemistry and toehold nanotechnology reveals lncRNA spreading on chromatin. Machyna M; Kiefer L; Simon MD Nat Struct Mol Biol; 2020 Mar; 27(3):297-304. PubMed ID: 32157249 [TBL] [Abstract][Full Text] [Related]
10. In situ dissection of RNA functional subunits by domain-specific chromatin isolation by RNA purification (dChIRP). Quinn JJ; Chang HY Methods Mol Biol; 2015; 1262():199-213. PubMed ID: 25555583 [TBL] [Abstract][Full Text] [Related]
12. Study of Genome-Wide Occupancy of Long Non-Coding RNAs Using Chromatin Isolation by RNA Purification (ChIRP). Alfeghaly C; Behm-Ansmant I; Maenner S Methods Mol Biol; 2021; 2300():107-117. PubMed ID: 33792876 [TBL] [Abstract][Full Text] [Related]
13. Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context. Alekseyenko AA; Ho JW; Peng S; Gelbart M; Tolstorukov MY; Plachetka A; Kharchenko PV; Jung YL; Gorchakov AA; Larschan E; Gu T; Minoda A; Riddle NC; Schwartz YB; Elgin SC; Karpen GH; Pirrotta V; Kuroda MI; Park PJ PLoS Genet; 2012; 8(4):e1002646. PubMed ID: 22570616 [TBL] [Abstract][Full Text] [Related]
14. UNR facilitates the interaction of MLE with the lncRNA roX2 during Drosophila dosage compensation. Militti C; Maenner S; Becker PB; Gebauer F Nat Commun; 2014 Aug; 5():4762. PubMed ID: 25158899 [TBL] [Abstract][Full Text] [Related]
15. DNA sequence models of genome-wide Drosophila melanogaster Polycomb binding sites improve generalization to independent Polycomb Response Elements. Bredesen BA; Rehmsmeier M Nucleic Acids Res; 2019 Sep; 47(15):7781-7797. PubMed ID: 31340029 [TBL] [Abstract][Full Text] [Related]
16. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Cao R; Wang L; Wang H; Xia L; Erdjument-Bromage H; Tempst P; Jones RS; Zhang Y Science; 2002 Nov; 298(5595):1039-43. PubMed ID: 12351676 [TBL] [Abstract][Full Text] [Related]
17. Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. Bell JC; Jukam D; Teran NA; Risca VI; Smith OK; Johnson WL; Skotheim JM; Greenleaf WJ; Straight AF Elife; 2018 Apr; 7():. PubMed ID: 29648534 [TBL] [Abstract][Full Text] [Related]
18. Mapping Chromatin Occupancy of Hwang J; Kang X; Wolf C; Touma M bioRxiv; 2023 Nov; ():. PubMed ID: 37961291 [TBL] [Abstract][Full Text] [Related]
19. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Gupta RA; Shah N; Wang KC; Kim J; Horlings HM; Wong DJ; Tsai MC; Hung T; Argani P; Rinn JL; Wang Y; Brzoska P; Kong B; Li R; West RB; van de Vijver MJ; Sukumar S; Chang HY Nature; 2010 Apr; 464(7291):1071-6. PubMed ID: 20393566 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation of EZH2 by CDK1 and CDK2: a possible regulatory mechanism of transmission of the H3K27me3 epigenetic mark through cell divisions. Zeng X; Chen S; Huang H Cell Cycle; 2011 Feb; 10(4):579-83. PubMed ID: 21278485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]