These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21963657)

  • 1. Artificial lightweight aggregates as utilization for future ashes - A case study.
    Sarabèr A; Overhof R; Green T; Pels J
    Waste Manag; 2012 Jan; 32(1):144-52. PubMed ID: 21963657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization/solidification of fly ashes and concrete production from bottom and circulating ashes produced in a power plant working under mono and co-combustion conditions.
    Barbosa R; Lapa N; Lopes H; Gulyurtlu I; Mendes B
    Waste Manag; 2011; 31(9-10):2009-19. PubMed ID: 21605964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete.
    Lo TY; Cui HZ; Li ZG
    Waste Manag; 2004; 24(4):333-8. PubMed ID: 15081059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.
    García Arenas C; Marrero M; Leiva C; Solís-Guzmán J; Vilches Arenas LF
    Waste Manag; 2011 Aug; 31(8):1783-9. PubMed ID: 21511456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacture of artificial aggregate using MSWI bottom ash.
    Cioffi R; Colangelo F; Montagnaro F; Santoro L
    Waste Manag; 2011 Feb; 31(2):281-8. PubMed ID: 20566278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash.
    Huang SC; Chang FC; Lo SL; Lee MY; Wang CF; Lin JD
    J Hazard Mater; 2007 Jun; 144(1-2):52-8. PubMed ID: 17118542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.
    Sim J; Park C
    Waste Manag; 2011 Nov; 31(11):2352-60. PubMed ID: 21784626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gypsum treated fly ash as a liner for waste disposal facilities.
    Sivapullaiah PV; Baig MA
    Waste Manag; 2011 Feb; 31(2):359-69. PubMed ID: 20817503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of lignite power generation residues for the production of lightweight aggregates.
    Anagnostopoulos IM; Stivanakis VE
    J Hazard Mater; 2009 Apr; 163(1):329-36. PubMed ID: 18804911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes.
    Alvarez-Ayuso E; Querol X; Plana F; Alastuey A; Moreno N; Izquierdo M; Font O; Moreno T; Diez S; Vázquez E; Barra M
    J Hazard Mater; 2008 Jun; 154(1-3):175-83. PubMed ID: 18006153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of fine aggregate replacement with fly ash an environmental friendly and economical solution.
    Pofale AD; Deo SV
    J Environ Sci Eng; 2010 Oct; 52(4):373-8. PubMed ID: 22312809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation and use of biomass fly ash in cement-based materials.
    Rajamma R; Ball RJ; Tarelho LA; Allen GC; Labrincha JA; Ferreira VM
    J Hazard Mater; 2009 Dec; 172(2-3):1049-60. PubMed ID: 19699034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of disposed fly ash from landfill to replace Portland cement.
    Cheerarot R; Jaturapitakkul C
    Waste Manag; 2004; 24(7):701-9. PubMed ID: 15288302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes.
    Kockal NU; Ozturan T
    J Hazard Mater; 2010 Jul; 179(1-3):954-65. PubMed ID: 20399557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.
    Osmanlioglu AE
    Waste Manag Res; 2014 May; 32(5):366-70. PubMed ID: 24638274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards.
    Oliveira ML; Marostega F; Taffarel SR; Saikia BK; Waanders FB; DaBoit K; Baruah BP; Silva LF
    Sci Total Environ; 2014 Jan; 468-469():1128-37. PubMed ID: 24121564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.
    Lee HK; Kim HK; Hwang EA
    Waste Manag; 2010 Feb; 30(2):274-84. PubMed ID: 19910181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valorization of lignite combustion residues and ferroalumina in the production of aggregates.
    Anagnostopoulos IM; Stivanakis VE; Angelopoulos GN; Papamantellos DC
    J Hazard Mater; 2010 Feb; 174(1-3):506-11. PubMed ID: 19850411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of cement stabilized fly ash-GBFS mixes as a highway construction material.
    Singh SP; Tripathy DP; Ranjith PG
    Waste Manag; 2008; 28(8):1331-7. PubMed ID: 18060762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental evaluation of green concretes versus conventional concrete by means of LCA.
    Turk J; Cotič Z; Mladenovič A; Šajna A
    Waste Manag; 2015 Nov; 45():194-205. PubMed ID: 26143535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.