BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21963764)

  • 1. How far can hydroxyl radicals travel? An electrochemical study based on a DNA mediated electron transfer process.
    Guo Q; Yue Q; Zhao J; Wang L; Wang H; Wei X; Liu J; Jia J
    Chem Commun (Camb); 2011 Nov; 47(43):11906-8. PubMed ID: 21963764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitively electrochemical detection of the DNA damage in situ by electro-Fenton reaction based on Fe@Fe2O3 core-shell nanonecklace and multi-walled carbon nanotube composite.
    Wang X; Jiao K
    Anal Chim Acta; 2010 Apr; 664(1):34-9. PubMed ID: 20226929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals on a boron-doped diamond electrode.
    Oliveira SC; Oliveira-Brett AM
    Langmuir; 2012 Mar; 28(10):4896-901. PubMed ID: 22335175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant sensors based on DNA-modified electrodes.
    Liu J; Roussel C; Lagger G; Tacchini P; Girault HH
    Anal Chem; 2005 Dec; 77(23):7687-94. PubMed ID: 16316177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence imaging of hydroxyl radicals at superhydrophobic gold flower-like surface in photocatalytic system.
    Liu Y; Zhu A; Tian Y
    Analyst; 2011 Mar; 136(6):1106-8. PubMed ID: 21240426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical sensing the DNA damage in situ induced by a cathodic process based on Fe@Fe(2)O(3) core-shell nanonecklace and Au nanoparticles mimicking metal toxicity pathways in vivo.
    Wang X; Yang T; Jiao K
    Biosens Bioelectron; 2009 Dec; 25(4):668-73. PubMed ID: 19734034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical antioxidant detection technique based on guanine-bonded graphene and magnetic nanoparticles composite materials.
    Li P; Zhang W; Zhao J; Meng F; Yue Q; Wang L; Li H; Gu X; Zhang S; Liu J
    Analyst; 2012 Sep; 137(18):4318-26. PubMed ID: 22858541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions of hydroxyl radical with bergenin, a natural poly phenol studied by pulse radiolysis.
    Singh U; Barik A; Priyadarsini KI
    Bioorg Med Chem; 2009 Aug; 17(16):6008-14. PubMed ID: 19608422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity.
    Voinov MA; Sosa Pagán JO; Morrison E; Smirnova TI; Smirnov AI
    J Am Chem Soc; 2011 Jan; 133(1):35-41. PubMed ID: 21141957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the OH radical scavenging activity of nordihydroguaiaretic acid: a combined theoretical and experimental study.
    Galano A; Macías-Ruvalcaba NA; Medina Campos ON; Pedraza-Chaverri J
    J Phys Chem B; 2010 May; 114(19):6625-35. PubMed ID: 20415502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new electrochemical sensor for OH radicals detection.
    Gualandi I; Tonelli D
    Talanta; 2013 Oct; 115():779-86. PubMed ID: 24054662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds.
    Zhang S; Zhao X; Niu H; Shi Y; Cai Y; Jiang G
    J Hazard Mater; 2009 Aug; 167(1-3):560-6. PubMed ID: 19201085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-Dependent Photocurrent Generation through Long-Distance Excess-Electron Transfer in DNA.
    Lin SH; Fujitsuka M; Majima T
    Angew Chem Int Ed Engl; 2016 Jul; 55(30):8715-7. PubMed ID: 27243800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalytic oxidation of L-tryptophan using copper hexacyanoferrate film modified gold nanoparticle graphite-wax electrode.
    Prabhu P; Babu RS; Narayanan SS
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):103-8. PubMed ID: 21621399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells.
    Reeves JF; Davies SJ; Dodd NJ; Jha AN
    Mutat Res; 2008 Apr; 640(1-2):113-22. PubMed ID: 18258270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced photocatalytic activity of bimodal mesoporous titania powders by C60 modification.
    Yu J; Ma T; Liu G; Cheng B
    Dalton Trans; 2011 Jul; 40(25):6635-44. PubMed ID: 21552575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO(2) heterogeneous catalysis.
    An T; Yang H; Song W; Li G; Luo H; Cooper WJ
    J Phys Chem A; 2010 Feb; 114(7):2569-75. PubMed ID: 20112953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bionic radical generation and antioxidant capacity sensing with photocatalytic graphene oxide-titanium dioxide composites under visible light.
    Ma W; Han D; Zhang N; Li F; Wu T; Dong X; Niu L
    Analyst; 2013 Apr; 138(8):2335-42. PubMed ID: 23457704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective photocatalytic oxidation of benzene for the synthesis of phenol using engineered Au-Pd alloy nanoparticles supported on titanium dioxide.
    Su R; Kesavan L; Jensen MM; Tiruvalam R; He Q; Dimitratos N; Wendt S; Glasius M; Kiely CJ; Hutchings GJ; Besenbacher F
    Chem Commun (Camb); 2014 Oct; 50(84):12612-4. PubMed ID: 25032752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical detection of lesions in DNA.
    Boal AK; Barton JK
    Bioconjug Chem; 2005; 16(2):312-21. PubMed ID: 15769084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.