These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21963795)

  • 1. FTIR spectroscopy: A new diagnostic tool to aid DNA analysis from heated bone.
    Fredericks JD; Bennett P; Williams A; Rogers KD
    Forensic Sci Int Genet; 2012 May; 6(3):375-80. PubMed ID: 21963795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A potential new diagnostic tool to aid DNA analysis from heat compromised bone using colorimetry: A preliminary study.
    Fredericks JD; Ringrose TJ; Dicken A; Williams A; Bennett P
    Sci Justice; 2015 Mar; 55(2):124-30. PubMed ID: 25753998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy.
    Mkukuma LD; Skakle JM; Gibson IR; Imrie CT; Aspden RM; Hukins DW
    Calcif Tissue Int; 2004 Oct; 75(4):321-8. PubMed ID: 15549647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The correlation between skeletal weathering and DNA quality and quantity.
    Misner LM; Halvorson AC; Dreier JL; Ubelaker DH; Foran DR
    J Forensic Sci; 2009 Jul; 54(4):822-8. PubMed ID: 19368622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of biomolecules in artificially and naturally aged teeth: implications for age estimation based on aspartic acid racemization and DNA analysis.
    Dobberstein RC; Huppertz J; von Wurmb-Schwark N; Ritz-Timme S
    Forensic Sci Int; 2008 Aug; 179(2-3):181-91. PubMed ID: 18621493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction, evaluation, and amplification of DNA from decalcified and undecalcified United States Civil War bone.
    Fisher DL; Holland MM; Mitchell L; Sledzik PS; Wilcox AW; Wadhams M; Weedn VW
    J Forensic Sci; 1993 Jan; 38(1):60-8. PubMed ID: 8426158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The utility of whole genome amplification for typing compromised forensic samples.
    Barber AL; Foran DR
    J Forensic Sci; 2006 Nov; 51(6):1344-9. PubMed ID: 17199620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of skeletal preparation techniques on DNA from human and non-human bone.
    Rennick SL; Fenton TW; Foran DR
    J Forensic Sci; 2005 Sep; 50(5):1016-9. PubMed ID: 16225205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of the effects of heat on the PCR-amplification of various sized DNA fragments extracted from Sus Scrofa molars.
    Rees KA; Cox MJ
    J Forensic Sci; 2010 Mar; 55(2):410-7. PubMed ID: 20102470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic markers in human bone: I. Deoxyribonucleic acid (DNA) analysis.
    Lee HC; Pagliaro EM; Berka KM; Folk NL; Anderson DT; Ruano G; Keith TP; Phipps P; Herrin GL; Garner DD
    J Forensic Sci; 1991 Mar; 36(2):320-30. PubMed ID: 1676721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation of model forensic bone in soil environments studied using infrared spectroscopy.
    Howes JM; Stuart BH; Thomas PS; Raja S; O'Brien C
    J Forensic Sci; 2012 Sep; 57(5):1161-7. PubMed ID: 22880821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatable full demineralization DNA extraction procedure from degraded skeletal remains.
    Amory S; Huel R; Bilić A; Loreille O; Parsons TJ
    Forensic Sci Int Genet; 2012 May; 6(3):398-406. PubMed ID: 21885362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymerase resistance to polymerase chain reaction inhibitors in bone*.
    Eilert KD; Foran DR
    J Forensic Sci; 2009 Sep; 54(5):1001-7. PubMed ID: 19686392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATR-FTIR spectroscopy combined with data manipulation as a pre-screening method to assess DNA preservation in skeletal remains.
    Leskovar T; Zupanič Pajnič I; Geršak ŽM; Jerman I; Črešnar M
    Forensic Sci Int Genet; 2020 Jan; 44():102196. PubMed ID: 31706110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of three DNA extraction methods on bone and blood stains up to 43 years old and amplification of three different gene sequences.
    Cattaneo C; Craig OE; James NT; Sokol RJ
    J Forensic Sci; 1997 Nov; 42(6):1126-35. PubMed ID: 9397557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA methylation-based forensic tissue identification.
    Frumkin D; Wasserstrom A; Budowle B; Davidson A
    Forensic Sci Int Genet; 2011 Nov; 5(5):517-24. PubMed ID: 21196138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platelets, a typical source of error in real-time PCR quantification of mitochondrial DNA content in human peripheral blood cells.
    Banas B; Kost BP; Goebel FD
    Eur J Med Res; 2004 Aug; 9(8):371-7. PubMed ID: 15337626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison of three methods for DNA extraction from bone remains].
    Del Valle C; Rodríguez A; Espinoza M
    Rev Biol Trop; 2004 Sep; 52(3):717-25. PubMed ID: 17361564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of processing techniques on the forensic DNA analysis of human skeletal remains.
    Arismendi JL; Baker LE; Matteson KJ
    J Forensic Sci; 2004 Sep; 49(5):930-4. PubMed ID: 15461092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical note: removal of metal ion inhibition encountered during DNA extraction and amplification of copper-preserved archaeological bone using size exclusion chromatography.
    Matheson CD; Marion TE; Hayter S; Esau N; Fratpietro R; Vernon KK
    Am J Phys Anthropol; 2009 Oct; 140(2):384-91. PubMed ID: 19530137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.