These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21963831)

  • 1. Rheology of embryonic avian blood.
    Al-Roubaie S; Jahnsen ED; Mohammed M; Henderson-Toth C; Jones EA
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2473-81. PubMed ID: 21963831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Newtonian flow of blood in arterioles: consequences for wall shear stress measurements.
    Sriram K; Intaglietta M; Tartakovsky DM
    Microcirculation; 2014 Oct; 21(7):628-39. PubMed ID: 24703006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow.
    Box FM; van der Geest RJ; Rutten MC; Reiber JH
    Invest Radiol; 2005 May; 40(5):277-94. PubMed ID: 15829825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile.
    Stoltz JF; Donner M
    Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates.
    Lee J; Chou TC; Kang D; Kang H; Chen J; Baek KI; Wang W; Ding Y; Carlo DD; Tai YC; Hsiai TK
    Sci Rep; 2017 May; 7(1):1980. PubMed ID: 28512313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenomenological characterization of blood's intermediate shear rate: a new concept for hemorheology.
    Tabesh H; Poorkhalil A; Akbari H; Rafiei F; Mottaghy K
    Phys Eng Sci Med; 2022 Dec; 45(4):1205-1217. PubMed ID: 36319841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4D flow evaluation of blood non-Newtonian behavior in left ventricle flow analysis.
    Riva A; Sturla F; Caimi A; Pica S; Giese D; Milani P; Palladini G; Lombardi M; Redaelli A; Votta E
    J Biomech; 2021 Apr; 119():110308. PubMed ID: 33631666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of blood rheology across species.
    Horner JS; Wagner NJ; Beris AN
    Soft Matter; 2021 May; 17(18):4766-4774. PubMed ID: 33870399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-independent relationships between hematocrit, blood viscosity, and yield stress derived from Couette viscometry data.
    Yeow YL; Wickramasinghe SR; Leong YK; Han B
    Biotechnol Prog; 2002; 18(5):1068-75. PubMed ID: 12363359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in pulsatile flow around stenosed microchannel depending on viscosity.
    Hong H; Song JM; Yeom E
    PLoS One; 2019; 14(1):e0210993. PubMed ID: 30677055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube.
    El-Khatib FH; Damiano ER
    Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W; Johnson PC; Gaehtgens P
    Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of non-Newtonian viscosity of red blood cell suspension: effect of red cell deformation.
    Murata T
    Biorheology; 1983; 20(5):471-83. PubMed ID: 6677273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.
    Marrero VL; Tichy JA; Sahni O; Jansen KE
    J Biomech Eng; 2014 Oct; 136(10):101001. PubMed ID: 24769921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.
    Murata T
    Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Newtonian viscosity of human blood: flow-induced changes in microstructure.
    Thurston GB
    Biorheology; 1994; 31(2):179-92. PubMed ID: 8729480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.