BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21963904)

  • 21. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron.
    Shin KH; Cha DK
    Chemosphere; 2008 May; 72(2):257-62. PubMed ID: 18331753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors.
    Cervantes FJ; Mancilla AR; Ríos-del Toro EE; Alpuche-Solís AG; Montoya-Lorenzana L
    J Hazard Mater; 2011 Nov; 195():201-7. PubMed ID: 21880424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anaerobic biodegradation of 4-alkylphenols in a paddy soil microcosm supplemented with nitrate.
    Shibata A; Toyota K; Miyake K; Katayama A
    Chemosphere; 2007 Aug; 68(11):2096-103. PubMed ID: 17408723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.
    Cai J; Zheng P; Mahmood Q
    Water Sci Technol; 2016; 73(4):947-54. PubMed ID: 26901739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of nitrite and nitrate on biogenic sulfide production in sewer biofilms determined by the use of microelectrodes.
    Okabe S; Ito T; Satoh H; Watanabe Y
    Water Sci Technol; 2003; 47(11):281-8. PubMed ID: 12906301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of BTX by dissimilatory iron-reducing cultures.
    Botton S; Parsons JR
    Biodegradation; 2007 Jun; 18(3):371-81. PubMed ID: 17091352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition.
    Scheid D; Stubner S; Conrad R
    FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors.
    Aulenta F; Pera A; Rossetti S; Petrangeli Papini M; Majone M
    Water Res; 2007 Jan; 41(1):27-38. PubMed ID: 17107702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation.
    Schreiber ME; Carey GR; Feinstein DT; Bahr JM
    J Contam Hydrol; 2004 Sep; 73(1-4):99-127. PubMed ID: 15336791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of anaerobic lactate metabolism under biosulfidogenic conditions.
    Oyekola OO; van Hille RP; Harrison ST
    Water Res; 2009 Aug; 43(14):3345-54. PubMed ID: 19559456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term operation of a reactor enriched in Accumulibacter clade I DPAOs: performance with nitrate, nitrite and oxygen.
    Lanham AB; Moita R; Lemos PC; Reis MA
    Water Sci Technol; 2011; 63(2):352-9. PubMed ID: 21252442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition.
    Boopathy R
    Bioresour Technol; 2001 Feb; 76(3):241-4. PubMed ID: 11198176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of sulfide on nitrate reduction in mixed methanogenic cultures.
    Tugtas AE; Pavlostathis SG
    Biotechnol Bioeng; 2007 Aug; 97(6):1448-59. PubMed ID: 17238206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrate supply and sulfate-reducing suppression facilitate the removal of pentachlorophenol in a flooded mangrove soil.
    Cheng J; Xue L; Zhu M; Feng J; Shen-Tu J; Xu J; Brookes PC; Tang C; He Y
    Environ Pollut; 2019 Jan; 244():792-800. PubMed ID: 30390452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Independence of nitrate and nitrite inhibition of Desulfovibrio vulgaris Hildenborough and use of nitrite as a substrate for growth.
    Korte HL; Saini A; Trotter VV; Butland GP; Arkin AP; Wall JD
    Environ Sci Technol; 2015 Jan; 49(2):924-31. PubMed ID: 25534748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aerobic degradation of sulfanilic acid using activated sludge.
    Chen G; Cheng KY; Ginige MP; Kaksonen AH
    Water Res; 2012 Jan; 46(1):145-51. PubMed ID: 22085771
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors.
    Villatoro-Monzón WR; Mesta-Howard AM; Razo-Flores E
    Water Sci Technol; 2003; 48(6):125-31. PubMed ID: 14640209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic characterization of lactic acid bacterium Lactococcus garvieae sk11, capable of reducing ferric iron, nitrate, and fumarate.
    Yun SH; Hwang TS; Park DH
    J Microbiol Biotechnol; 2007 Feb; 17(2):218-25. PubMed ID: 18051752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Batch culture enrichment of ANAMMOX populations from anaerobic and aerobic seed cultures.
    Suneethi S; Joseph K
    Bioresour Technol; 2011 Jan; 102(2):585-91. PubMed ID: 20729077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation of pentaerythritol tetranitrate (PETN) by anaerobic consortia from a contaminated site.
    Zhuang L; Gui L; Gillham RW
    Chemosphere; 2012 Oct; 89(7):810-6. PubMed ID: 22647196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.