BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 21964034)

  • 1. Measuring E(GSH) and H2O2 with roGFP2-based redox probes.
    Morgan B; Sobotta MC; Dick TP
    Free Radic Biol Med; 2011 Dec; 51(11):1943-51. PubMed ID: 21964034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
    Meyer AJ; Brach T; Marty L; Kreye S; Rouhier N; Jacquot JP; Hell R
    Plant J; 2007 Dec; 52(5):973-86. PubMed ID: 17892447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time quantification of subcellular H
    Panieri E; Millia C; Santoro MM
    Free Radic Biol Med; 2017 Aug; 109():189-200. PubMed ID: 28192232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time imaging of the intracellular glutathione redox potential.
    Gutscher M; Pauleau AL; Marty L; Brach T; Wabnitz GH; Samstag Y; Meyer AJ; Dick TP
    Nat Methods; 2008 Jun; 5(6):553-9. PubMed ID: 18469822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo imaging of H2O2 production in Drosophila.
    Barata AG; Dick TP
    Methods Enzymol; 2013; 526():61-82. PubMed ID: 23791094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically encoded fluorescent redox sensors.
    Lukyanov KA; Belousov VV
    Biochim Biophys Acta; 2014 Feb; 1840(2):745-56. PubMed ID: 23726987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring real-time in vivo redox biology of developing and aging Caenorhabditis elegans.
    Back P; De Vos WH; Depuydt GG; Matthijssens F; Vanfleteren JR; Braeckman BP
    Free Radic Biol Med; 2012 Mar; 52(5):850-9. PubMed ID: 22226831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxide Probes.
    Roma LP; Deponte M; Riemer J; Morgan B
    Antioxid Redox Signal; 2018 Aug; 29(6):552-568. PubMed ID: 29160083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic measurements of mitochondrial hydrogen peroxide concentration and glutathione redox state in rat pancreatic β-cells using ratiometric fluorescent proteins: confounding effects of pH with HyPer but not roGFP1.
    Roma LP; Duprez J; Takahashi HK; Gilon P; Wiederkehr A; Jonas JC
    Biochem J; 2012 Feb; 441(3):971-8. PubMed ID: 22050124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress.
    Rosenwasser S; Rot I; Meyer AJ; Feldman L; Jiang K; Friedman H
    Physiol Plant; 2010 Apr; 138(4):493-502. PubMed ID: 20051029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes.
    Albrecht SC; Sobotta MC; Bausewein D; Aller I; Hell R; Dick TP; Meyer AJ
    J Biomol Screen; 2014 Mar; 19(3):379-86. PubMed ID: 23954927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium in Drosophila Neuron Subtypes Using Redox-Sensitive Fluorophores and 3D Imaging.
    Buhlman LM; Keoseyan PP; Houlihan KL; Juba AN
    Methods Mol Biol; 2021; 2276():113-127. PubMed ID: 34060036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging dynamic redox processes with genetically encoded probes.
    Ezeriņa D; Morgan B; Dick TP
    J Mol Cell Cardiol; 2014 Aug; 73():43-9. PubMed ID: 24406687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal imaging of glutathione redox potential in living plant cells.
    Schwarzländer M; Fricker MD; Müller C; Marty L; Brach T; Novak J; Sweetlove LJ; Hell R; Meyer AJ
    J Microsc; 2008 Aug; 231(2):299-316. PubMed ID: 18778428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring glutathione redox potential of HIV-1-infected macrophages.
    Bhaskar A; Munshi M; Khan SZ; Fatima S; Arya R; Jameel S; Singh A
    J Biol Chem; 2015 Jan; 290(2):1020-38. PubMed ID: 25406321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live Monitoring of ROS-Induced Cytosolic Redox Changes with roGFP2-Based Sensors in Plants.
    Ugalde JM; Fecker L; Schwarzländer M; Müller-Schüssele SJ; Meyer AJ
    Methods Mol Biol; 2022; 2526():65-85. PubMed ID: 35657512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic in vitro assessment of responses of roGFP2-based probes to physiologically relevant oxidant species.
    Müller A; Schneider JF; Degrossoli A; Lupilova N; Dick TP; Leichert LI
    Free Radic Biol Med; 2017 May; 106():329-338. PubMed ID: 28242229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically encoded reactive oxygen species (ROS) and redox indicators.
    Pouvreau S
    Biotechnol J; 2014 Feb; 9(2):282-93. PubMed ID: 24497389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis.
    Albrecht SC; Barata AG; Grosshans J; Teleman AA; Dick TP
    Cell Metab; 2011 Dec; 14(6):819-29. PubMed ID: 22100409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing redox-sensitive GFP fusions to detect in vivo redox changes in a genetically engineered prokaryote.
    Reuter WH; Masuch T; Ke N; Lenon M; Radzinski M; Van Loi V; Ren G; Riggs P; Antelmann H; Reichmann D; Leichert LI; Berkmen M
    Redox Biol; 2019 Sep; 26():101280. PubMed ID: 31450103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.