These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 21964718)

  • 1. Multiplexed pressure sensing with elastomer membranes.
    Orth A; Schonbrun E; Crozier KB
    Lab Chip; 2011 Nov; 11(22):3810-5. PubMed ID: 21964718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatic aberration control for tunable all-silicone membrane microlenses.
    Waibel P; Mader D; Liebetraut P; Zappe H; Seifert A
    Opt Express; 2011 Sep; 19(19):18584-92. PubMed ID: 21935227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive liquid microlenses activated by stimuli-responsive hydrogels.
    Dong L; Agarwal AK; Beebe DJ; Jiang H
    Nature; 2006 Aug; 442(7102):551-4. PubMed ID: 16885981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color tunable pressure sensors based on polymer nanostructured membranes for optofluidic applications.
    Escudero P; Yeste J; Pascual-Izarra C; Villa R; Alvarez M
    Sci Rep; 2019 Mar; 9(1):3259. PubMed ID: 30824807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable microfluidic microlenses.
    Werber A; Zappe H
    Appl Opt; 2005 Jun; 44(16):3238-45. PubMed ID: 15943257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Varifocal liquid-filled microlens operated by an electroactive polymer actuator.
    Choi ST; Lee JY; Kwon JO; Lee S; Kim W
    Opt Lett; 2011 May; 36(10):1920-2. PubMed ID: 21593935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit.
    Song W; Psaltis D
    Lab Chip; 2011 Jul; 11(14):2397-402. PubMed ID: 21617797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Completely integrated, thermo-pneumatically tunable microlens.
    Zhang W; Aljasem K; Zappe H; Seifert A
    Opt Express; 2011 Jan; 19(3):2347-62. PubMed ID: 21369053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics.
    Chang MP; Maharbiz MM
    Lab Chip; 2009 May; 9(9):1274-81. PubMed ID: 19370248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discretely tunable optofluidic compound microlenses.
    Fei P; He Z; Zheng C; Chen T; Men Y; Huang Y
    Lab Chip; 2011 Sep; 11(17):2835-41. PubMed ID: 21799999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable liquid-filled microlens array integrated with microfluidic network.
    Chronis N; Liu G; Jeong KH; Lee L
    Opt Express; 2003 Sep; 11(19):2370-8. PubMed ID: 19471346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-density microfluidic arrays for cell cytotoxicity analysis.
    Wang Z; Kim MC; Marquez M; Thorsen T
    Lab Chip; 2007 Jun; 7(6):740-5. PubMed ID: 17538716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical sensing systems for microfluidic devices: a review.
    Kuswandi B; Nuriman ; Huskens J; Verboom W
    Anal Chim Acta; 2007 Oct; 601(2):141-55. PubMed ID: 17920386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically resistant microfluidic valves from Viton® membranes bonded to COC and PMMA.
    Ogilvie IR; Sieben VJ; Cortese B; Mowlem MC; Morgan H
    Lab Chip; 2011 Jul; 11(14):2455-9. PubMed ID: 21617822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection.
    Wang CH; Lee GB
    Biosens Bioelectron; 2005 Sep; 21(3):419-25. PubMed ID: 16076430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biological sensor platform using a pneumatic-valve controlled microfluidic device containing Tetrahymena pyriformis.
    Nam SW; Van Noort D; Yang Y; Park S
    Lab Chip; 2007 May; 7(5):638-40. PubMed ID: 17476385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.