These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21964909)

  • 1. Effects of different levels of compression during sub-maximal and high-intensity exercise on erythrocyte deformability.
    Wahl P; Bloch W; Mester J; Born DP; Sperlich B
    Eur J Appl Physiol; 2012 Jun; 112(6):2163-9. PubMed ID: 21964909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardio-respiratory and metabolic responses to different levels of compression during submaximal exercise.
    Sperlich B; Haegele M; Krüger M; Schiffer T; Holmberg HC; Mester J
    Phlebology; 2011 Apr; 26(3):102-6. PubMed ID: 21228356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximal lactate steady state in trained adolescent runners.
    Almarwaey OA; Jones AM; Tolfrey K
    J Sports Sci; 2004 Feb; 22(2):215-25. PubMed ID: 14998099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise-induced blood lactate increase does not change red blood cell deformability in cyclists.
    Simmonds MJ; Connes P; Sabapathy S
    PLoS One; 2013; 8(8):e71219. PubMed ID: 23940722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why does exercise terminate at the maximal lactate steady state intensity?
    Baron B; Noakes TD; Dekerle J; Moullan F; Robin S; Matran R; Pelayo P
    Br J Sports Med; 2008 Oct; 42(10):828-33. PubMed ID: 18070803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eryptosis and hemorheological responses to maximal exercise in athletes: Comparison between running and cycling.
    Nader E; Guillot N; Lavorel L; Hancco I; Fort R; Stauffer E; Renoux C; Joly P; Germain M; Connes P
    Scand J Med Sci Sports; 2018 May; 28(5):1532-1540. PubMed ID: 29356101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamic and metabolic responses to self-paced and ramp-graded exercise testing protocols.
    Beltz NM; Amorim FT; Gibson AL; Janot JM; Kravitz L; Mermier CM; Cole N; Moriarty TA; Nunez TP; Trigg S; Dalleck LC
    Appl Physiol Nutr Metab; 2018 Jun; 43(6):609-616. PubMed ID: 29334615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion.
    Barker AR; Williams CA; Jones AM; Armstrong N
    Br J Sports Med; 2011 May; 45(6):498-503. PubMed ID: 19679577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The performance and aerobic endurance effects of high-intensity versus moderate-intensity continuous running.
    Jarstad E; Mamen A
    Appl Physiol Nutr Metab; 2019 Sep; 44(9):990-996. PubMed ID: 30726107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different types of compression clothing do not increase sub-maximal and maximal endurance performance in well-trained athletes.
    Sperlich B; Haegele M; Achtzehn S; Linville J; Holmberg HC; Mester J
    J Sports Sci; 2010 Apr; 28(6):609-14. PubMed ID: 20391083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise effects on erythrocyte deformability in exercise-induced arterial hypoxemia.
    Alis R; Sanchis-Gomar F; Ferioli D; La Torre A; Blesa JR; Romagnoli M
    Int J Sports Med; 2015 Apr; 36(4):286-91. PubMed ID: 25429547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heart Rate-based Lactate Minimum Test in Running and Cycling.
    Perret C; Hartmann K
    Int J Sports Med; 2021 Jul; 42(9):812-817. PubMed ID: 33506446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ergometric and psychological findings during overtraining: a long-term follow-up study in endurance athletes.
    Urhausen A; Gabriel HH; Weiler B; Kindermann W
    Int J Sports Med; 1998 Feb; 19(2):114-20. PubMed ID: 9562220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ischemic Preconditioning Enhances Performance and Erythrocyte Deformability of Responders.
    Tomschi F; Niemann D; Bloch W; Predel HG; Grau M
    Int J Sports Med; 2018 Jul; 39(8):596-603. PubMed ID: 29883988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of aerobic training status on both maximal lactate steady state and critical power.
    Greco CC; Caritá RA; Dekerle J; Denadai BS
    Appl Physiol Nutr Metab; 2012 Aug; 37(4):736-43. PubMed ID: 22680338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of combined active recovery from supramaximal exercise on blood lactate disappearance in trained and untrained man.
    Gmada N; Bouhlel E; Mrizak I; Debabi H; Ben Jabrallah M; Tabka Z; Feki Y; Amri M
    Int J Sports Med; 2005 Dec; 26(10):874-9. PubMed ID: 16320173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Blood Lactate Level Deteriorates Running Economy in World Class Endurance Athletes.
    Hoff J; Støren Ø; Finstad A; Wang E; Helgerud J
    J Strength Cond Res; 2016 May; 30(5):1373-8. PubMed ID: 26817745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximal exercise and lactate do not change red blood cell aggregation in well trained athletes.
    Connes P; Caillaud C; Py G; Mercier J; Hue O; Brun JF
    Clin Hemorheol Microcirc; 2007; 36(4):319-26. PubMed ID: 17502702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes.
    Jacobs RA; Rasmussen P; Siebenmann C; Díaz V; Gassmann M; Pesta D; Gnaiger E; Nordsborg NB; Robach P; Lundby C
    J Appl Physiol (1985); 2011 Nov; 111(5):1422-30. PubMed ID: 21885805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testosterone responses to standardized short-term sub-maximal and maximal endurance exercises: issues on the dynamic adaptive role of the hypothalamic-pituitary-testicular axis.
    Sgrò P; Romanelli F; Felici F; Sansone M; Bianchini S; Buzzachera CF; Baldari C; Guidetti L; Pigozzi F; Lenzi A; Di Luigi L
    J Endocrinol Invest; 2014 Jan; 37(1):13-24. PubMed ID: 24464446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.