These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
838 related articles for article (PubMed ID: 21965160)
1. Batch, fed-batch, and microcarrier cultures with CHO cell lines in a pressure-cycle driven miniaturized bioreactor. Kim BJ; Zhao T; Young L; Zhou P; Shuler ML Biotechnol Bioeng; 2012 Jan; 109(1):137-45. PubMed ID: 21965160 [TBL] [Abstract][Full Text] [Related]
2. Cell attachment to microcarriers affects growth, metabolic activity, and culture productivity in bioreactor culture. Nam JH; Ermonval M; Sharfstein ST Biotechnol Prog; 2007; 23(3):652-60. PubMed ID: 17500530 [TBL] [Abstract][Full Text] [Related]
3. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures. Amanullah A; Otero JM; Mikola M; Hsu A; Zhang J; Aunins J; Schreyer HB; Hope JA; Russo AP Biotechnol Bioeng; 2010 May; 106(1):57-67. PubMed ID: 20073088 [TBL] [Abstract][Full Text] [Related]
4. Fed-batch bioreactor performance and cell line stability evaluation of the artificial chromosome expression technology expressing an IgG1 in Chinese hamster ovary cells. Combs RG; Yu E; Roe S; Piatchek MB; Jones HL; Mott J; Kennard ML; Goosney DL; Monteith D Biotechnol Prog; 2011; 27(1):201-8. PubMed ID: 21312367 [TBL] [Abstract][Full Text] [Related]
5. Process development for a recombinant Chinese hamster ovary (CHO) cell line utilizing a metal induced and amplified metallothionein expression system. Huang EP; Marquis CP; Gray PP Biotechnol Bioeng; 2004 Nov; 88(4):437-50. PubMed ID: 15459913 [TBL] [Abstract][Full Text] [Related]
6. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
7. Improved bioprocess with CHO-hTSH cells on higher microcarrier concentration provides higher overall biomass and productivity for rhTSH. Ventini DC; Damiani R; Sousa AP; de Oliveira JE; Peroni CN; Ribela MT; Bartolini P; Tonso A; Soares CR; Pereira CA Appl Biochem Biotechnol; 2011 Jun; 164(4):401-9. PubMed ID: 21181451 [TBL] [Abstract][Full Text] [Related]
8. An actively mixed mini-bioreactor for protein production from suspended animal cells. Diao J; Young L; Zhou P; Shuler ML Biotechnol Bioeng; 2008 May; 100(1):72-81. PubMed ID: 18078290 [TBL] [Abstract][Full Text] [Related]
9. A novel control scheme for inducing angiostatin-human IgG fusion protein production using recombinant CHO cells in a oscillating bioreactor. Wang IK; Hsieh SY; Chang KM; Wang YC; Chu A; Shaw SY; Ou JJ; Ho L J Biotechnol; 2006 Feb; 121(3):418-28. PubMed ID: 16162365 [TBL] [Abstract][Full Text] [Related]
10. Autophagy and apoptosis of recombinant Chinese hamster ovary cells during fed-batch culture: effect of nutrient supplementation. Han YK; Ha TK; Lee SJ; Lee JS; Lee GM Biotechnol Bioeng; 2011 Sep; 108(9):2182-92. PubMed ID: 21495016 [TBL] [Abstract][Full Text] [Related]
11. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908 [TBL] [Abstract][Full Text] [Related]
12. Growth, metabolic activity, and productivity of immobilized and freely suspended CHO cells in perfusion culture. Hilal-Alnaqbi A; Hu AY; Zhang Z; Al-Rubeai M Biotechnol Appl Biochem; 2013; 60(4):436-45. PubMed ID: 23701045 [TBL] [Abstract][Full Text] [Related]
13. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors. Tan JG; Lee YY; Wang T; Yap MG; Tan TW; Ng SK Biotechnol J; 2015 May; 10(5):790-800. PubMed ID: 25740626 [TBL] [Abstract][Full Text] [Related]
14. Metabolic analysis of antibody producing CHO cells in fed-batch production. Dean J; Reddy P Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898 [TBL] [Abstract][Full Text] [Related]
15. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Huang YM; Hu W; Rustandi E; Chang K; Yusuf-Makagiansar H; Ryll T Biotechnol Prog; 2010; 26(5):1400-10. PubMed ID: 20945494 [TBL] [Abstract][Full Text] [Related]
16. Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Xing Z; Kenty BM; Li ZJ; Lee SS Biotechnol Bioeng; 2009 Jul; 103(4):733-46. PubMed ID: 19280669 [TBL] [Abstract][Full Text] [Related]
17. High yields of monomeric recombinant beta-interferon from macroporous microcarrier cultures under hypothermic conditions. Tharmalingam T; Sunley K; Butler M Biotechnol Prog; 2008; 24(4):832-8. PubMed ID: 19194894 [TBL] [Abstract][Full Text] [Related]
18. Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Senger RS; Karim MN Biotechnol Prog; 2003; 19(4):1199-209. PubMed ID: 12892482 [TBL] [Abstract][Full Text] [Related]
19. Production of a secreted glycoprotein from an inducible promoter system in a perfusion bioreactor. Lipscomb ML; Mowry MC; Kompala DS Biotechnol Prog; 2004; 20(5):1402-7. PubMed ID: 15458323 [TBL] [Abstract][Full Text] [Related]
20. Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture. Chong WP; Goh LT; Reddy SG; Yusufi FN; Lee DY; Wong NS; Heng CK; Yap MG; Ho YS Rapid Commun Mass Spectrom; 2009 Dec; 23(23):3763-71. PubMed ID: 19902412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]