BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 21965171)

  • 21. A weight of evidence approach for hazard screening of engineered nanomaterials.
    Hristozov DR; Zabeo A; Foran C; Isigonis P; Critto A; Marcomini A; Linkov I
    Nanotoxicology; 2014 Feb; 8(1):72-87. PubMed ID: 23153309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genotoxicity investigations on nanomaterials.
    Oesch F; Landsiedel R
    Arch Toxicol; 2012 Jul; 86(7):985-94. PubMed ID: 22456836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predictive models for nanotoxicology: current challenges and future opportunities.
    Clark KA; White RH; Silbergeld EK
    Regul Toxicol Pharmacol; 2011 Apr; 59(3):361-3. PubMed ID: 21310205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental toxicity testing in the 21st century: the sword of Damocles shattered by embryonic stem cell assays?
    Seiler A; Oelgeschläger M; Liebsch M; Pirow R; Riebeling C; Tralau T; Luch A
    Arch Toxicol; 2011 Nov; 85(11):1361-72. PubMed ID: 22008952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxicity testing in the 21st century: how will it affect risk assessment?
    Rhomberg LR
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):361-75. PubMed ID: 20574908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the toxicity of selected types of nanochemicals.
    Kumar V; Kumari A; Guleria P; Yadav SK
    Rev Environ Contam Toxicol; 2012; 215():39-121. PubMed ID: 22057930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toxicity testing of nanomaterials.
    Schrand AM; Dai L; Schlager JJ; Hussain SM
    Adv Exp Med Biol; 2012; 745():58-75. PubMed ID: 22437813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toxicity testing in the 21st century: bringing the vision to life.
    Andersen ME; Krewski D
    Toxicol Sci; 2009 Feb; 107(2):324-30. PubMed ID: 19074763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Research strategy for evaluation methods of the manufactured nanomaterials in NIHS and importance of the chronic health effects studies].
    Hirose A; Nishimura T; Kanno J
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2009; (127):15-25. PubMed ID: 20306702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternative in vitro assays in nanomaterial toxicology.
    Hartung T; Sabbioni E
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(6):545-73. PubMed ID: 21766468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique.
    Murdock RC; Braydich-Stolle L; Schrand AM; Schlager JJ; Hussain SM
    Toxicol Sci; 2008 Feb; 101(2):239-53. PubMed ID: 17872897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular interactions of nanomaterials and organisms: defining biomarkers for toxicity and high-throughput screening using traditional and next-generation sequencing approaches.
    Klaper R; Arndt D; Bozich J; Dominguez G
    Analyst; 2014 Mar; 139(5):882-95. PubMed ID: 24343342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanotoxicology and in vitro studies: the need of the hour.
    Arora S; Rajwade JM; Paknikar KM
    Toxicol Appl Pharmacol; 2012 Jan; 258(2):151-65. PubMed ID: 22178382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxicology in the 21st century--working our way towards a visionary reality.
    Berg N; De Wever B; Fuchs HW; Gaca M; Krul C; Roggen EL
    Toxicol In Vitro; 2011 Jun; 25(4):874-81. PubMed ID: 21338664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of nanomaterials for toxicity assessment.
    Sayes CM; Warheit DB
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(6):660-70. PubMed ID: 20049823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials.
    Liu Q; Wang X; Xia T
    Anal Bioanal Chem; 2018 Sep; 410(24):6097-6111. PubMed ID: 30066194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The U.S. Environmental Protection Agency strategic plan for evaluating the toxicity of chemicals.
    Firestone M; Kavlock R; Zenick H; Kramer M;
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):139-62. PubMed ID: 20574895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developmental toxicity testing for safety assessment: new approaches and technologies.
    Knudsen TB; Kavlock RJ; Daston GP; Stedman D; Hixon M; Kim JH
    Birth Defects Res B Dev Reprod Toxicol; 2011 Oct; 92(5):413-20. PubMed ID: 21770025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of the dog as non-rodent test species in the safety testing schedule associated with the registration of crop and plant protection products (pesticides): present status.
    Box RJ; Spielmann H
    Arch Toxicol; 2005 Nov; 79(11):615-26. PubMed ID: 15940470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.