These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 21965171)

  • 41. Commentary on ''Toxicity testing in the 21st century: a vision and a strategy'': stem cells and cell-cell communication as fundamental targets in assessing the potential toxicity of chemicals.
    Trosko JE
    Hum Exp Toxicol; 2010 Jan; 29(1):21-9. PubMed ID: 20061464
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures?
    Warheit DB; Sayes CM; Reed KL
    Environ Sci Technol; 2009 Oct; 43(20):7939-45. PubMed ID: 19921917
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro genotoxicity data of nanomaterials compared to carcinogenic potency of inorganic substances after inhalational exposure.
    Roller M
    Mutat Res; 2011; 727(3):72-85. PubMed ID: 21458593
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The future of toxicity testing.
    Andersen ME; Al-Zoughool M; Croteau M; Westphal M; Krewski D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):163-96. PubMed ID: 20574896
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Factors to consider in the use of stem cells for pharmaceutic drug development and for chemical safety assessment.
    Trosko JE; Chang CC
    Toxicology; 2010 Mar; 270(1):18-34. PubMed ID: 19948204
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Current and future needs for developmental toxicity testing.
    Makris SL; Kim JH; Ellis A; Faber W; Harrouk W; Lewis JM; Paule MG; Seed J; Tassinari M; Tyl R
    Birth Defects Res B Dev Reprod Toxicol; 2011 Oct; 92(5):384-94. PubMed ID: 21922641
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity.
    Sayes C; Ivanov I
    Risk Anal; 2010 Nov; 30(11):1723-34. PubMed ID: 20561263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Moving toward exposure and risk evaluation of nanomaterials: challenges and future directions.
    Thomas T; Bahadori T; Savage N; Thomas K
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(4):426-33. PubMed ID: 20049808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanomaterial health effects--part 1: background and current knowledge.
    Powell MC; Kanarek MS
    WMJ; 2006 Mar; 105(2):16-20. PubMed ID: 16628969
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Behavioral toxicology in the 21st century: challenges and opportunities for behavioral scientists. Summary of a symposium presented at the annual meeting of the neurobehavioral teratology society, June, 2009.
    Bushnell PJ; Kavlock RJ; Crofton KM; Weiss B; Rice DC
    Neurotoxicol Teratol; 2010; 32(3):313-28. PubMed ID: 20171276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mapping the biological oxidative damage of engineered nanomaterials.
    Hsieh SF; Bello D; Schmidt DF; Pal AK; Stella A; Isaacs JA; Rogers EJ
    Small; 2013 May; 9(9-10):1853-65. PubMed ID: 23423873
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FIFRA Subdivision F testing Guidelines: are these tests adequate to detect potential hormonal activity for crop protection chemicals? Federal Insecticide, Fungicide, and Rodenticide Act.
    Stevens JT; Tobia A; Lamb JC; Tellone C; O'Neal F
    J Toxicol Environ Health; 1997 Apr; 50(5):415-31. PubMed ID: 9140462
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A 21st century paradigm for evaluating the health hazards of nanoscale materials?
    Walker NJ; Bucher JR
    Toxicol Sci; 2009 Aug; 110(2):251-4. PubMed ID: 19468057
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Disruption of embryonic vascular development in predictive toxicology.
    Knudsen TB; Kleinstreuer NC
    Birth Defects Res C Embryo Today; 2011 Dec; 93(4):312-23. PubMed ID: 22271680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toxicity assessment of nanomaterials: methods and challenges.
    Dhawan A; Sharma V
    Anal Bioanal Chem; 2010 Sep; 398(2):589-605. PubMed ID: 20652549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Risk assessment of engineered nanomaterials and nanotechnologies--a review.
    Savolainen K; Alenius H; Norppa H; Pylkkänen L; Tuomi T; Kasper G
    Toxicology; 2010 Mar; 269(2-3):92-104. PubMed ID: 20105448
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs.
    Sohal IS; O'Fallon KS; Gaines P; Demokritou P; Bello D
    Part Fibre Toxicol; 2018 Jul; 15(1):29. PubMed ID: 29970114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies.
    Chen RJ; Chen YY; Liao MY; Lee YH; Chen ZY; Yan SJ; Yeh YL; Yang LX; Lee YL; Wu YH; Wang YJ
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32235610
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The status of in vitro toxicity studies in the risk assessment of nanomaterials.
    Park MV; Lankveld DP; van Loveren H; de Jong WH
    Nanomedicine (Lond); 2009 Aug; 4(6):669-85. PubMed ID: 19663595
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of physicochemical properties of nanomaterials and their immediate environments in high-throughput screening of nanomaterial biological activity.
    Wang A; Marinakos SM; Badireddy AR; Powers CM; Houck KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(5):430-48. PubMed ID: 23661551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.