These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Kennedy AS; Kleinstreuer C; Basciano CA; Dezarn WA Int J Radiat Oncol Biol Phys; 2010 Feb; 76(2):631-7. PubMed ID: 19910131 [TBL] [Abstract][Full Text] [Related]
3. Computationally efficient particle release map determination for direct tumor-targeting in a representative hepatic artery system. Childress EM; Kleinstreuer C J Biomech Eng; 2014 Jan; 136(1):011012. PubMed ID: 24190601 [TBL] [Abstract][Full Text] [Related]
4. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Basciano CA; Kleinstreuer C; Kennedy AS; Dezarn WA; Childress E Ann Biomed Eng; 2010 May; 38(5):1862-79. PubMed ID: 20162358 [TBL] [Abstract][Full Text] [Related]
5. A new catheter for tumor targeting with radioactive microspheres in representative hepatic artery systems. Part I: impact of catheter presence on local blood flow and microsphere delivery. Kleinstreuer C; Basciano CA; Childress EM; Kennedy AS J Biomech Eng; 2012 May; 134(5):051004. PubMed ID: 22757492 [TBL] [Abstract][Full Text] [Related]
6. Simulation Model of Microsphere Distribution for Selective Internal Radiation Therapy Agrees With Observations. Högberg J; Rizell M; Hultborn R; Svensson J; Henrikson O; Mölne J; Gjertsson P; Bernhardt P Int J Radiat Oncol Biol Phys; 2016 Oct; 96(2):414-421. PubMed ID: 27475671 [TBL] [Abstract][Full Text] [Related]
7. Selective internal radiation therapy: quantifying distal penetration and distribution of resin and glass microspheres in a surrogate arterial model. Jernigan SR; Osborne JA; Mirek CJ; Buckner G J Vasc Interv Radiol; 2015 Jun; 26(6):897-904.e2. PubMed ID: 25891507 [TBL] [Abstract][Full Text] [Related]
8. On the importance of spiral-flow inflow boundary conditions when using idealized artery geometries in the analysis of liver radioembolization: A parametric study. Ortega J; Antón R; Ramos JC; Rivas A; Larraona GS; Sangro B; Bilbao JI; Aramburu J Int J Numer Method Biomed Eng; 2020 Jun; 36(6):e3337. PubMed ID: 32212316 [TBL] [Abstract][Full Text] [Related]
9. Impact of fluid-structure interaction on direct tumor-targeting in a representative hepatic artery system. Childress EM; Kleinstreuer C Ann Biomed Eng; 2014 Mar; 42(3):461-74. PubMed ID: 24048712 [TBL] [Abstract][Full Text] [Related]
10. Impact of Yttrium-90 Microsphere Density, Flow Dynamics, and Administration Technique on Spatial Distribution: Analysis Using an In Vitro Model. Caine M; McCafferty MS; McGhee S; Garcia P; Mullett WM; Zhang X; Hill M; Dreher MR; Lewis AL J Vasc Interv Radiol; 2017 Feb; 28(2):260-268.e2. PubMed ID: 27641675 [TBL] [Abstract][Full Text] [Related]
11. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm. Boutsianis E; Guala M; Olgac U; Wildermuth S; Hoyer K; Ventikos Y; Poulikakos D J Biomech Eng; 2009 Jan; 131(1):011008. PubMed ID: 19045924 [TBL] [Abstract][Full Text] [Related]
12. A new catheter for tumor-targeting with radioactive microspheres in representative hepatic artery systems--part II: solid tumor-targeting in a patient-inspired hepatic artery system. Childress EM; Kleinstreuer C; Kennedy AS J Biomech Eng; 2012 May; 134(5):051005. PubMed ID: 22757493 [TBL] [Abstract][Full Text] [Related]
13. Effects of flat, parabolic and realistic steady flow inlet profiles on idealised and realistic stent graft fits through Abdominal Aortic Aneurysms (AAA). Morris L; Delassus P; Grace P; Wallis F; Walsh M; McGloughlin T Med Eng Phys; 2006 Jan; 28(1):19-26. PubMed ID: 15919225 [TBL] [Abstract][Full Text] [Related]
15. Physiological outflow boundary conditions methodology for small arteries with multiple outlets: a patient-specific hepatic artery haemodynamics case study. Aramburu J; Antón R; Bernal N; Rivas A; Ramos JC; Sangro B; Bilbao JI Proc Inst Mech Eng H; 2015 Apr; 229(4):291-306. PubMed ID: 25934258 [TBL] [Abstract][Full Text] [Related]
16. Effect of mean diameter and polydispersity of PLG microspheres on drug release: experiment and theory. Berchane NS; Carson KH; Rice-Ficht AC; Andrews MJ Int J Pharm; 2007 Jun; 337(1-2):118-26. PubMed ID: 17289316 [TBL] [Abstract][Full Text] [Related]
17. A physical model of the thermodilution method: influences of the variations of experimental setup on the accuracy of flow rate estimation. Ozbek M; Ozel HF; Ekerbiçer N; Zeren T Biomed Tech (Berl); 2011 Feb; 56(1):59-64. PubMed ID: 21208137 [TBL] [Abstract][Full Text] [Related]
18. Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Steele BN; Olufsen MS; Taylor CA Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):39-51. PubMed ID: 18651270 [TBL] [Abstract][Full Text] [Related]
19. The role of angled-tip microcatheter and microsphere injection velocity in liver radioembolization: A computational particle-hemodynamics study. Aramburu J; Antón R; Rivas A; Ramos JC; Sangro B; Bilbao JI Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28474382 [TBL] [Abstract][Full Text] [Related]
20. Boundary conditions in simulation of stenosed coronary arteries. Mohammadi H; Bahramian F Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]