These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21965291)

  • 1. Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness.
    Zakrzewska A; van Eikenhorst G; Burggraaff JE; Vis DJ; Hoefsloot H; Delneri D; Oliver SG; Brul S; Smits GJ
    Mol Biol Cell; 2011 Nov; 22(22):4435-46. PubMed ID: 21965291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae.
    Auesukaree C; Damnernsawad A; Kruatrachue M; Pokethitiyook P; Boonchird C; Kaneko Y; Harashima S
    J Appl Genet; 2009; 50(3):301-10. PubMed ID: 19638689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae.
    Thorsen M; Perrone GG; Kristiansson E; Traini M; Ye T; Dawes IW; Nerman O; Tamás MJ
    BMC Genomics; 2009 Mar; 10():105. PubMed ID: 19284616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
    Mira NP; Palma M; Guerreiro JF; Sá-Correia I
    Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cti6 is an Rpd3-Sin3 histone deacetylase-associated protein required for growth under iron-limiting conditions in Saccharomyces cerevisiae.
    Puig S; Lau M; Thiele DJ
    J Biol Chem; 2004 Jul; 279(29):30298-306. PubMed ID: 15133041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genome-wide screen of genes involved in cadmium tolerance in Schizosaccharomyces pombe.
    Kennedy PJ; Vashisht AA; Hoe KL; Kim DU; Park HO; Hayles J; Russell P
    Toxicol Sci; 2008 Nov; 106(1):124-39. PubMed ID: 18684775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collaboration between the essential Esa1 acetyltransferase and the Rpd3 deacetylase is mediated by H4K12 histone acetylation in Saccharomyces cerevisiae.
    Chang CS; Pillus L
    Genetics; 2009 Sep; 183(1):149-60. PubMed ID: 19596907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Rpd3L HDAC complex is essential for the heat stress response in yeast.
    Ruiz-Roig C; Viéitez C; Posas F; de Nadal E
    Mol Microbiol; 2010 May; 76(4):1049-62. PubMed ID: 20398213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes.
    De Nadal E; Zapater M; Alepuz PM; Sumoy L; Mas G; Posas F
    Nature; 2004 Jan; 427(6972):370-4. PubMed ID: 14737171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The histone deacetylase Rpd3p is required for transient changes in genomic expression in response to stress.
    Alejandro-Osorio AL; Huebert DJ; Porcaro DT; Sonntag ME; Nillasithanukroh S; Will JL; Gasch AP
    Genome Biol; 2009; 10(5):R57. PubMed ID: 19470158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conserved histone deacetylase Rpd3 and the DNA binding regulator Ume6 repress BOI1's meiotic transcript isoform during vegetative growth in Saccharomyces cerevisiae.
    Liu Y; Stuparevic I; Xie B; Becker E; Law MJ; Primig M
    Mol Microbiol; 2015 May; 96(4):861-74. PubMed ID: 25708805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Set4 is a chromatin-associated protein, promotes survival during oxidative stress, and regulates stress response genes in yeast.
    Tran K; Jethmalani Y; Jaiswal D; Green EM
    J Biol Chem; 2018 Sep; 293(37):14429-14443. PubMed ID: 30082318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent Mechanisms for Acquired Salt Tolerance versus Growth Resumption Induced by Mild Ethanol Pretreatment in
    McDaniel EA; Stuecker TN; Veluvolu M; Gasch AP; Lewis JA
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30487155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.
    Ando A; Nakamura T; Murata Y; Takagi H; Shima J
    FEMS Yeast Res; 2007 Mar; 7(2):244-53. PubMed ID: 16989656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases.
    Robyr D; Suka Y; Xenarios I; Kurdistani SK; Wang A; Suka N; Grunstein M
    Cell; 2002 May; 109(4):437-46. PubMed ID: 12086601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover.
    Kalapis D; Bezerra AR; Farkas Z; Horvath P; Bódi Z; Daraba A; Szamecz B; Gut I; Bayes M; Santos MA; Pál C
    PLoS Biol; 2015; 13(11):e1002291. PubMed ID: 26544557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-stress resistance in Saccharomyces cerevisiae yeast--new insight into an old phenomenon.
    Święciło A
    Cell Stress Chaperones; 2016 Mar; 21(2):187-200. PubMed ID: 26825800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.
    Shima J; Ando A; Takagi H
    Yeast; 2008 Mar; 25(3):179-90. PubMed ID: 18224659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray.
    Mahmud SA; Hirasawa T; Furusawa C; Yoshikawa K; Shimizu H
    J Biosci Bioeng; 2012 Apr; 113(4):526-8. PubMed ID: 22222142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.