These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. The Hou L; Zheng B; Jiang Z; Hu Y; Shi L; Dong Y; Jiang Y Microbiol Spectr; 2024 Aug; 12(8):e0051224. PubMed ID: 38916364 [TBL] [Abstract][Full Text] [Related]
27. Towards electrosynthesis in shewanella: energetics of reversing the mtr pathway for reductive metabolism. Ross DE; Flynn JM; Baron DB; Gralnick JA; Bond DR PLoS One; 2011 Feb; 6(2):e16649. PubMed ID: 21311751 [TBL] [Abstract][Full Text] [Related]
28. Growth yield and energy generation in anaerobically-grown Campylobacter spec. Laanbroek HJ; Veldkamp H Arch Microbiol; 1979 Jan; 120(1):47-51. PubMed ID: 426598 [TBL] [Abstract][Full Text] [Related]
29. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth. Duhl KL; Tefft NM; TerAvest MA Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176 [No Abstract] [Full Text] [Related]
30. Growth with high planktonic biomass in Shewanella oneidensis fuel cells. Lanthier M; Gregory KB; Lovley DR FEMS Microbiol Lett; 2008 Jan; 278(1):29-35. PubMed ID: 17995953 [TBL] [Abstract][Full Text] [Related]
31. Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA. Call DF; Logan BE Appl Environ Microbiol; 2011 Dec; 77(24):8791-4. PubMed ID: 22003020 [TBL] [Abstract][Full Text] [Related]
32. Using metabolic charge production in the tricarboxylic acid cycle (Q Li SL; Yen JH; Kano K; Liu SM; Liu CL; Cheng SS; Chen HY Bioelectrochemistry; 2018 Dec; 124():119-126. PubMed ID: 30015268 [TBL] [Abstract][Full Text] [Related]
33. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Zaunmüller T; Eichert M; Richter H; Unden G Appl Microbiol Biotechnol; 2006 Sep; 72(3):421-9. PubMed ID: 16826375 [TBL] [Abstract][Full Text] [Related]
34. Shewanella oneidensis MR-1 chemotaxis in a diffusion gradient chamber. Li R; Auchtung JM; Tiedje JM; Worden RM Environ Sci Technol; 2011 Feb; 45(3):1014-20. PubMed ID: 21174460 [TBL] [Abstract][Full Text] [Related]
35. Energy yield of respiration on chloroaromatic compounds in Desulfitobacterium dehalogenans. van de Pas BA; Jansen S; Dijkema C; Schraa G; de Vos WM; Stams AJ Appl Environ Microbiol; 2001 Sep; 67(9):3958-63. PubMed ID: 11525991 [TBL] [Abstract][Full Text] [Related]
36. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Glasser NR; Kern SE; Newman DK Mol Microbiol; 2014 Apr; 92(2):399-412. PubMed ID: 24612454 [TBL] [Abstract][Full Text] [Related]
37. Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1. Flynn CM; Hunt KA; Gralnick JA; Srienc F Biosystems; 2012 Feb; 107(2):120-8. PubMed ID: 22024451 [TBL] [Abstract][Full Text] [Related]
38. Shewanella oneidensis MR-1 sensory box protein involved in aerobic and anoxic growth. Sundararajan A; Kurowski J; Yan T; Klingeman DM; Joachimiak MP; Zhou J; Naranjo B; Gralnick JA; Fields MW Appl Environ Microbiol; 2011 Jul; 77(13):4647-56. PubMed ID: 21602393 [TBL] [Abstract][Full Text] [Related]
39. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Pinchuk GE; Rodionov DA; Yang C; Li X; Osterman AL; Dervyn E; Geydebrekht OV; Reed SB; Romine MF; Collart FR; Scott JH; Fredrickson JK; Beliaev AS Proc Natl Acad Sci U S A; 2009 Feb; 106(8):2874-9. PubMed ID: 19196979 [TBL] [Abstract][Full Text] [Related]
40. Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Cai PJ; Xiao X; He YR; Li WW; Chu J; Wu C; He MX; Zhang Z; Sheng GP; Lam MH; Xu F; Yu HQ Appl Microbiol Biotechnol; 2012 Feb; 93(4):1769-76. PubMed ID: 21808969 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]