These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21965568)

  • 1. Cyclohexane-1,2-dione hydrolase from denitrifying Azoarcus sp. strain 22Lin, a novel member of the thiamine diphosphate enzyme family.
    Steinbach AK; Fraas S; Harder J; Tabbert A; Brinkmann H; Meyer A; Ermler U; Kroneck PM
    J Bacteriol; 2011 Dec; 193(23):6760-9. PubMed ID: 21965568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a ring-cleaving cyclohexane-1,2-dione hydrolase, a novel member of the thiamine diphosphate enzyme family.
    Steinbach A; Fraas S; Harder J; Warkentin E; Kroneck PM; Ermler U
    FEBS J; 2012 Apr; 279(7):1209-19. PubMed ID: 22309255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation.
    Loschonsky S; Wacker T; Waltzer S; Giovannini PP; McLeish MJ; Andrade SL; Müller M
    Angew Chem Int Ed Engl; 2014 Dec; 53(52):14402-6. PubMed ID: 25382418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic scope of the thiamine-dependent multifunctional enzyme cyclohexane-1,2-dione hydrolase.
    Loschonsky S; Waltzer S; Fraas S; Wacker T; Andrade SL; Kroneck PM; Müller M
    Chembiochem; 2014 Feb; 15(3):389-92. PubMed ID: 24436243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding and activation of thiamin diphosphate in acetohydroxyacid synthase.
    Bar-Ilan A; Balan V; Tittmann K; Golbik R; Vyazmensky M; Hübner G; Barak Z; Chipman DM
    Biochemistry; 2001 Oct; 40(39):11946-54. PubMed ID: 11570896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2-Oxoglutarate:NADP(+) oxidoreductase in Azoarcus evansii: properties and function in electron transfer reactions in aromatic ring reduction.
    Ebenau-Jehle C; Boll M; Fuchs G
    J Bacteriol; 2003 Oct; 185(20):6119-29. PubMed ID: 14526024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of a highly conserved proline-126 in ThDP binding of Mycobacterium tuberculosis acetohydroxyacid synthase.
    Baig IA; Gedi V; Lee SC; Koh SH; Yoon MY
    Enzyme Microb Technol; 2013 Sep; 53(4):243-9. PubMed ID: 23931689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (alpha-hydroxyethyl)thiamin diphosphate in a "nonredox" flavoenzyme.
    Tittmann K; Schröder K; Golbik R; McCourt J; Kaplun A; Duggleby RG; Barak Z; Chipman DM; Hübner G
    Biochemistry; 2004 Jul; 43(27):8652-61. PubMed ID: 15236573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structures of Klebsiella pneumoniae acetolactate synthase with enzyme-bound cofactor and with an unusual intermediate.
    Pang SS; Duggleby RG; Schowen RL; Guddat LW
    J Biol Chem; 2004 Jan; 279(3):2242-53. PubMed ID: 14557277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the cofactor-binding site of Zymomonas mobilis pyruvate decarboxylase by site-directed mutagenesis.
    Candy JM; Duggleby RG
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):7-13. PubMed ID: 8198554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of acetohydroxyacid synthase I from Escherichia coli K-12 and identification of its inhibitors.
    Pham NC; Moon JY; Cho JH; Lee SJ; Park JS; Kim DE; Park Y; Yoon MY
    Biosci Biotechnol Biochem; 2010; 74(11):2281-6. PubMed ID: 21071847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and mechanism of the ThDP-dependent benzaldehyde lyase from Pseudomonas fluorescens.
    Mosbacher TG; Mueller M; Schulz GE
    FEBS J; 2005 Dec; 272(23):6067-76. PubMed ID: 16302970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes involved in the anaerobic degradation of ortho-phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01.
    Junghare M; Spiteller D; Schink B
    Environ Microbiol; 2016 Sep; 18(9):3175-88. PubMed ID: 27387486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 7α-hydroxysteroid dehydratase Hsh2 is essential for anaerobic degradation of the steroid skeleton of 7α-hydroxyl bile salts in the novel denitrifying bacterium Azoarcus sp. strain Aa7.
    Yücel O; Borgert SR; Poehlein A; Niermann K; Philipp B
    Environ Microbiol; 2019 Feb; 21(2):800-813. PubMed ID: 30680854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-Oxo-3-alkynoic acids, universal mechanism-based inactivators of thiamin diphosphate-dependent decarboxylases: synthesis and evidence for potent inactivation of the pyruvate dehydrogenase multienzyme complex.
    Brown A; Nemeria N; Yi J; Zhang D; Jordan WB; Machado RS; Guest JR; Jordan F
    Biochemistry; 1997 Jul; 36(26):8071-81. PubMed ID: 9201955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state kinetics and molecular evolution of Escherichia coli MenD [(1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase], an anomalous thiamin diphosphate-dependent decarboxylase-carboligase.
    Bhasin M; Billinsky JL; Palmer DR
    Biochemistry; 2003 Nov; 42(46):13496-504. PubMed ID: 14621995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of thiamin diphosphate and FAD in the phosphatedependent pyruvate oxidase from Lactobacillus plantarum.
    Tittmann K; Proske D; Spinka M; Ghisla S; Rudolph R; Hübner G; Kern G
    J Biol Chem; 1998 May; 273(21):12929-34. PubMed ID: 9582325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida.
    Siegert P; McLeish MJ; Baumann M; Iding H; Kneen MM; Kenyon GL; Pohl M
    Protein Eng Des Sel; 2005 Jul; 18(7):345-57. PubMed ID: 15930043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.