BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 2196557)

  • 1. An attempt to unify the structure of polymerases.
    Delarue M; Poch O; Tordo N; Moras D; Argos P
    Protein Eng; 1990 May; 3(6):461-7. PubMed ID: 2196557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general structure for DNA-dependent DNA polymerases.
    Blanco L; Bernad A; Blasco MA; Salas M
    Gene; 1991 Apr; 100():27-38. PubMed ID: 2055476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase.
    Ollis DL; Kline C; Steitz TA
    Nature; 1985 Feb 28-Mar 6; 313(6005):818-9. PubMed ID: 3883196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary structure of the DNA polymerase I gene of an alpha-proteobacterium, Rhizobium leguminosarum, and comparison with other family A DNA polymerases.
    Huang YP; Downie JA; Ito J
    Curr Microbiol; 1999 Jun; 38(6):355-9. PubMed ID: 10341077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase.
    Villbrandt B; Sobek H; Frey B; Schomburg D
    Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Wowor AJ; Datta K; Brown HS; Thompson GS; Ray S; Grove A; LiCata VJ
    Biophys J; 2010 Jun; 98(12):3015-24. PubMed ID: 20550914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability.
    Korolev S; Nayal M; Barnes WM; Di Cera E; Waksman G
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9264-8. PubMed ID: 7568114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-assisted primary and secondary structure analyses of DNA polymerases of herpes simplex, Epstein-Barr and varicella zoster viruses reveal conserved domains with some homology to DNA-binding domain in E. coli DNA pol I.
    Becker Y
    Virus Genes; 1988 Jul; 1(4):351-67. PubMed ID: 2852411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Point mutations which drastically affect the polymerization activity of encephalomyocarditis virus RNA-dependent RNA polymerase correspond to the active site of Escherichia coli DNA polymerase I.
    Sankar S; Porter AG
    J Biol Chem; 1992 May; 267(14):10168-76. PubMed ID: 1315753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides.
    Tabor S; Richardson CC
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6339-43. PubMed ID: 7603992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid and nucleotide sequence homologies among E. coli RNA polymerase core enzyme subunits, DNA primase, elongation factor Tu, F1-ATPase alpha, ribosomal protein L3, DNA polymerase I, T7 phage DNA polymerase, and MS2 phage RNA replicase beta subunit.
    Ohnishi K
    Nucleic Acids Symp Ser; 1985; (16):253-6. PubMed ID: 2868446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity.
    Joho KE; Gross LB; McGraw NJ; Raskin C; McAllister WT
    J Mol Biol; 1990 Sep; 215(1):31-9. PubMed ID: 2204707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of replication versus repair DNA substrates with the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Yang Y; LiCata VJ
    Biophys Chem; 2011 Nov; 159(1):188-93. PubMed ID: 21742429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarity relations of DNA and RNA polymerases investigated by the principal component analysis of amino acid sequences.
    Otsuka J; Kikuchi N; Kojima S
    Biochim Biophys Acta; 1999 Oct; 1434(2):221-47. PubMed ID: 10525143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary structure of bacteriophage M2 DNA polymerase: conserved segments within protein-priming DNA polymerases and DNA polymerase I of Escherichia coli.
    Matsumoto K; Takano H; Kim CI; Hirokawa H
    Gene; 1989 Dec; 84(2):247-55. PubMed ID: 2515115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA polymerase active site is highly mutable: evolutionary consequences.
    Patel PH; Loeb LA
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5095-100. PubMed ID: 10805772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity.
    Lawyer FC; Stoffel S; Saiki RK; Chang SY; Landre PA; Abramson RD; Gelfand DH
    PCR Methods Appl; 1993 May; 2(4):275-87. PubMed ID: 8324500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant Thermus aquaticus RNA polymerase, a new tool for structure-based analysis of transcription.
    Minakhin L; Nechaev S; Campbell EA; Severinov K
    J Bacteriol; 2001 Jan; 183(1):71-6. PubMed ID: 11114902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of Thermus aquaticus DNA polymerase.
    Kim Y; Eom SH; Wang J; Lee DS; Suh SW; Steitz TA
    Nature; 1995 Aug; 376(6541):612-6. PubMed ID: 7637814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.