These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21966028)

  • 1. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions.
    Safranski DL; Crabtree JC; Huq YR; Gall K
    Polymer (Guildf); 2011 Sep; 52(21):4920-4927. PubMed ID: 21966028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-degradable poly(β-amino ester) networks with temporally controlled enhancement of mechanical properties.
    Safranski DL; Weiss D; Clark JB; Taylor WR; Gall K
    Acta Biomater; 2014 Aug; 10(8):3475-83. PubMed ID: 24769113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of poly(ethylene glycol) diacrylate concentration on network properties and in vivo response of poly(β-amino ester) networks.
    Safranski DL; Weiss D; Clark JB; Caspersen BS; Taylor WR; Gall K
    J Biomed Mater Res A; 2011 Feb; 96(2):320-9. PubMed ID: 21171151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration.
    Chung JJ; Fujita Y; Li S; Stevens MM; Kasuga T; Georgiou TK; Jones JR
    Acta Biomater; 2017 May; 54():411-418. PubMed ID: 28285078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term toughness of photopolymerizable (meth)acrylate networks in aqueous environments.
    Smith KE; Trusty P; Wan B; Gall K
    Acta Biomater; 2011 Feb; 7(2):558-67. PubMed ID: 20828638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the glass transition temperature on the toughness of photopolymerizable (meth)acrylate networks under physiological conditions.
    Smith KE; Sawicki S; Hyjek MA; Downey S; Gall K
    Polymer (Guildf); 2009 Oct; 50(21):5112-5123. PubMed ID: 21709775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel micro-crosslinked poly(organophosphazenes) with improved mechanical properties and controllable degradation rate as potential biodegradable matrix.
    Cui Y; Zhao X; Tang X; Luo Y
    Biomaterials; 2004 Feb; 25(3):451-7. PubMed ID: 14585693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shrinkage / stress reduction and mechanical properties improvement in restorative composites formulated with thio-urethane oligomers.
    Bacchi A; Yih JA; Platta J; Knight J; Pfeifer CS
    J Mech Behav Biomed Mater; 2018 Feb; 78():235-240. PubMed ID: 29175492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of high-temperature molecular relaxations in poly(2-(2-methoxyethoxy)ethyl methacrylate) upon network formation.
    Kozanecki M; Pastorczak M; Okrasa L; Ulanski J; Yoon JA; Kowalewski T; Matyjaszewski K; Koynov K
    Colloid Polym Sci; 2015; 293(5):1357-1367. PubMed ID: 26316672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement of poly(methyl methacrylate) denture base with glass flake.
    Franklin P; Wood DJ; Bubb NL
    Dent Mater; 2005 Apr; 21(4):365-70. PubMed ID: 15766583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s.
    Zhong Z; Song Y; Engbersen JF; Lok MC; Hennink WE; Feijen J
    J Control Release; 2005 Dec; 109(1-3):317-29. PubMed ID: 16081184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of fracture toughness and mechanical properties of ternary thiol-ene-methacrylate systems as resin matrix for dental restorative composites.
    Beigi S; Yeganeh H; Atai M
    Dent Mater; 2013 Jul; 29(7):777-87. PubMed ID: 23702048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glass Transition Temperature Regulates Mechanical Performance in Nacre-Mimetic Nanocomposites.
    Lossada F; Abbasoglu T; Jiao D; Hoenders D; Walther A
    Macromol Rapid Commun; 2020 Oct; 41(20):e2000380. PubMed ID: 32909331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of physiological temperature on the mechanical properties and network structure of biodegradable poly(propylene fumarate)-based networks.
    Timmer MD; Horch RA; Ambrose CG; Mikos AG
    J Biomater Sci Polym Ed; 2003; 14(4):369-82. PubMed ID: 12747675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical and thermal properties of hydroxyaptite filled poly (methyl methacrylate) heat processed denture base material.
    Mohamed SH; Arifin A; Mohd Ishak ZA; Nizam A; Samsudin AR
    Med J Malaysia; 2004 May; 59 Suppl B():25-6. PubMed ID: 15468801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, structural characterization, and thermomechanical properties of poly(methyl methacrylate)/organoclay nanocomposites by melt intercalation.
    Matadi R; Makradi A; Ahzi S; Sieffert JG; Etienne S; Rush D; Vaudemont R; Muller R; Bouquey M
    J Nanosci Nanotechnol; 2009 May; 9(5):2923-30. PubMed ID: 19452950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly(trimethylene carbonate)-poly(ethylene glycol)-poly(trimethylene carbonate) macromonomers and nanoclay particles.
    Sharifi S; Blanquer SB; van Kooten TG; Grijpma DW
    Acta Biomater; 2012 Dec; 8(12):4233-43. PubMed ID: 22995403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a photo-initiated copper(I)-catalyzed azide-alkyne cycloaddition polymer network with improved water stability and high mechanical performance as an ester-free dental restorative.
    Wang X; Gao G; Song HB; Zhang X; Stansbury JW; Bowman CN
    Dent Mater; 2021 Oct; 37(10):1592-1600. PubMed ID: 34456051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO(2)-CaO nanocomposite.
    Lee KH; Rhee SH
    Biomaterials; 2009 Jul; 30(20):3444-9. PubMed ID: 19304322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copolymerization of photocrosslinkable anhydride monomers for use as a biodegradable bone cement.
    Watkins AW; Anseth KS
    J Biomater Sci Polym Ed; 2003; 14(3):267-78. PubMed ID: 12713099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.