BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 21966073)

  • 1. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing.
    Mölle M; Bergmann TO; Marshall L; Born J
    Sleep; 2011 Oct; 34(10):1411-21. PubMed ID: 21966073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spindle activity phase-locked to sleep slow oscillations.
    Klinzing JG; Mölle M; Weber F; Supp G; Hipp JF; Engel AK; Born J
    Neuroimage; 2016 Jul; 134():607-616. PubMed ID: 27103135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
    Weber FD; Supp GG; Klinzing JG; Mölle M; Engel AK; Born J
    Neuroimage; 2021 Jan; 224():117452. PubMed ID: 33059050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence.
    Hahn MA; Heib D; Schabus M; Hoedlmoser K; Helfrich RF
    Elife; 2020 Jun; 9():. PubMed ID: 32579108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development.
    Joechner AK; Hahn MA; Gruber G; Hoedlmoser K; Werkle-Bergner M
    Elife; 2023 Nov; 12():. PubMed ID: 37999945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activity.
    Ayoub A; Aumann D; Hörschelmann A; Kouchekmanesch A; Paul P; Born J; Marshall L
    Sleep; 2013 Jun; 36(6):905-11. PubMed ID: 23729934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driving sleep slow oscillations by auditory closed-loop stimulation-a self-limiting process.
    Ngo HV; Miedema A; Faude I; Martinetz T; Mölle M; Born J
    J Neurosci; 2015 Apr; 35(17):6630-8. PubMed ID: 25926443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The space-time profiles of sleep spindles and their coordination with slow oscillations on the electrode manifold.
    Malerba P; Whitehurst L; Mednick SC
    Sleep; 2022 Aug; 45(8):. PubMed ID: 35666552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleep Spindles Preferentially Consolidate Weakly Encoded Memories.
    Denis D; Mylonas D; Poskanzer C; Bursal V; Payne JD; Stickgold R
    J Neurosci; 2021 May; 41(18):4088-4099. PubMed ID: 33741722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Oscillating Sounds to Manipulate Sleep Spindles.
    Antony JW; Paller KA
    Sleep; 2017 Mar; 40(3):. PubMed ID: 28364415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-Night Continuous Rocking Entrains Spontaneous Neural Oscillations with Benefits for Sleep and Memory.
    Perrault AA; Khani A; Quairiaux C; Kompotis K; Franken P; Muhlethaler M; Schwartz S; Bayer L
    Curr Biol; 2019 Feb; 29(3):402-411.e3. PubMed ID: 30686735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor Learning Promotes the Coupling between Fast Spindles and Slow Oscillations Locally over the Contralateral Motor Network.
    Solano A; Riquelme LA; Perez-Chada D; Della-Maggiore V
    Cereb Cortex; 2022 Jun; 32(12):2493-2507. PubMed ID: 34649283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats.
    Mölle M; Eschenko O; Gais S; Sara SJ; Born J
    Eur J Neurosci; 2009 Mar; 29(5):1071-81. PubMed ID: 19245368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Spindle Variability.
    Gonzalez C; Jiang X; Gonzalez-Martinez J; Halgren E
    J Neurosci; 2022 Jun; 42(22):4517-4537. PubMed ID: 35477906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential thalamocortical interactions in slow and fast spindle generation: A computational model.
    Mushtaq M; Marshall L; Bazhenov M; Mölle M; Martinetz T
    PLoS One; 2022; 17(12):e0277772. PubMed ID: 36508417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep-slow oscillation-spindle coupling precedes spindle-ripple coupling during development.
    Fechner J; Contreras MP; Zorzo C; Shan X; Born J; Inostroza M
    Sleep; 2024 May; 47(5):. PubMed ID: 38452190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theta Bursts Precede, and Spindles Follow, Cortical and Thalamic Downstates in Human NREM Sleep.
    Gonzalez CE; Mak-McCully RA; Rosen BQ; Cash SS; Chauvel PY; Bastuji H; Rey M; Halgren E
    J Neurosci; 2018 Nov; 38(46):9989-10001. PubMed ID: 30242045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-temporal structure of sleep slow oscillations on the electrode manifold and its relation to spindles.
    Malerba P; Whitehurst LN; Simons SB; Mednick SC
    Sleep; 2019 Jan; 42(1):. PubMed ID: 30335179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep Spindles Promote the Restructuring of Memory Representations in Ventromedial Prefrontal Cortex through Enhanced Hippocampal-Cortical Functional Connectivity.
    Cowan E; Liu A; Henin S; Kothare S; Devinsky O; Davachi L
    J Neurosci; 2020 Feb; 40(9):1909-1919. PubMed ID: 31959699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond spindles: interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations.
    Laventure S; Pinsard B; Lungu O; Carrier J; Fogel S; Benali H; Lina JM; Boutin A; Doyon J
    Sleep; 2018 Sep; 41(9):. PubMed ID: 30137521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.