BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 21966270)

  • 1. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector.
    Wang Y; Kahane S; Cutcliffe LT; Skilton RJ; Lambden PR; Clarke IN
    PLoS Pathog; 2011 Sep; 7(9):e1002258. PubMed ID: 21966270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic transformation of a clinical (genital tract), plasmid-free isolate of Chlamydia trachomatis: engineering the plasmid as a cloning vector.
    Wang Y; Kahane S; Cutcliffe LT; Skilton RJ; Lambden PR; Persson K; Bjartling C; Clarke IN
    PLoS One; 2013; 8(3):e59195. PubMed ID: 23527131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle.
    Skilton RJ; Cutcliffen LT; Barlow D; Wang Y; Salim O; Lambden PR; Clarke IN
    PLoS One; 2009 Nov; 4(11):e7723. PubMed ID: 19893744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of a plasmid-free, genital tract isolate of Chlamydia trachomatis with a plasmid vector carrying a deletion in CDS6 revealed that this gene regulates inclusion phenotype.
    Wang Y; Cutcliffe LT; Skilton RJ; Persson K; Bjartling C; Clarke IN
    Pathog Dis; 2013 Mar; 67(2):100-3. PubMed ID: 23620154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of sexually transmitted infection-causing serovars of chlamydia trachomatis using Blasticidin for selection.
    Ding H; Gong S; Tian Y; Yang Z; Brunham R; Zhong G
    PLoS One; 2013; 8(11):e80534. PubMed ID: 24303023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A broad-spectrum cloning vector that exists as both an integrated element and a free plasmid in Chlamydia trachomatis.
    Garvin L; Vande Voorde R; Dickinson M; Carrell S; Hybiske K; Rockey D
    PLoS One; 2021; 16(12):e0261088. PubMed ID: 34914750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum.
    Wang Y; Cutcliffe LT; Skilton RJ; Ramsey KH; Thomson NR; Clarke IN
    Pathog Dis; 2014 Oct; 72(1):19-23. PubMed ID: 24700815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendrimer-enabled transformation of Chlamydia trachomatis.
    Kannan RM; Gérard HC; Mishra MK; Mao G; Wang S; Hali M; Whittum-Hudson JA; Hudson AP
    Microb Pathog; 2013 Dec; 65():29-35. PubMed ID: 24075820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Genetic Transformation of Chlamydia pneumoniae.
    Shima K; Wanker M; Skilton RJ; Cutcliffe LT; Schnee C; Kohl TA; Niemann S; Geijo J; Klinger M; Timms P; Rattei T; Sachse K; Clarke IN; Rupp J
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30305318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmid-mediated transformation tropism of chlamydial biovars.
    Song L; Carlson JH; Zhou B; Virtaneva K; Whitmire WM; Sturdevant GL; Porcella SF; McClarty G; Caldwell HD
    Pathog Dis; 2014 Mar; 70(2):189-93. PubMed ID: 24214488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
    Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Chlamydia trachomatis plasmid-encoded open reading frames.
    Gong S; Yang Z; Lei L; Shen L; Zhong G
    J Bacteriol; 2013 Sep; 195(17):3819-26. PubMed ID: 23794619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloramphenicol acetyltransferase as a selection marker for chlamydial transformation.
    Xu S; Battaglia L; Bao X; Fan H
    BMC Res Notes; 2013 Sep; 6():377. PubMed ID: 24060200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Plasmid Shuttle Vector System for Genetic Manipulation of Chlamydia psittaci.
    Shima K; Weber MM; Schnee C; Sachse K; Käding N; Klinger M; Rupp J
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32848009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle.
    Shaw EI; Dooley CA; Fischer ER; Scidmore MA; Fields KA; Hackstadt T
    Mol Microbiol; 2000 Aug; 37(4):913-25. PubMed ID: 10972811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Transformation of a
    O'Neill CE; Skilton RJ; Pearson SA; Filardo S; Andersson P; Clarke IN
    Front Cell Infect Microbiol; 2018; 8():434. PubMed ID: 30619780
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of penicillin on Chlamydia trachomatis DNA replication.
    Lambden PR; Pickett MA; Clarke IN
    Microbiology (Reading); 2006 Sep; 152(Pt 9):2573-2578. PubMed ID: 16946252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis.
    Mueller KE; Wolf K; Fields KA
    mBio; 2016 Jan; 7(1):e01817-15. PubMed ID: 26787828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Modeling of the Chlamydial Developmental Cycle Reveals a Potential Role for Asymmetric Division.
    Chiarelli TJ; Grieshaber NA; Appa C; Grieshaber SS
    mSystems; 2023 Apr; 8(2):e0005323. PubMed ID: 36927072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.