BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21966457)

  • 1. Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93.
    Esberg A; Muller LA; McCusker JH
    PLoS One; 2011; 6(9):e25211. PubMed ID: 21966457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution mapping of meiotic crossovers and non-crossovers in yeast.
    Mancera E; Bourgon R; Brozzi A; Huber W; Steinmetz LM
    Nature; 2008 Jul; 454(7203):479-85. PubMed ID: 18615017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphisms in multiple genes contribute to the spontaneous mitochondrial genome instability of Saccharomyces cerevisiae S288C strains.
    Dimitrov LN; Brem RB; Kruglyak L; Gottschling DE
    Genetics; 2009 Sep; 183(1):365-83. PubMed ID: 19581448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genealogy of principal strains of the yeast genetic stock center.
    Mortimer RK; Johnston JR
    Genetics; 1986 May; 113(1):35-43. PubMed ID: 3519363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition between adjacent meiotic recombination hotspots in the yeast Saccharomyces cerevisiae.
    Fan QQ; Xu F; White MA; Petes TD
    Genetics; 1997 Mar; 145(3):661-70. PubMed ID: 9055076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Temperature on the Meiotic Recombination Landscape of the Yeast
    Zhang K; Wu XC; Zheng DQ; Petes TD
    mBio; 2017 Dec; 8(6):. PubMed ID: 29259092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature and distribution of large sequence polymorphisms in Saccharomyces cerevisiae.
    Muller LA; McCusker JH
    FEMS Yeast Res; 2011 Nov; 11(7):587-94. PubMed ID: 22093685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the Yeast Recombination Landscape.
    Liu H; Maclean CJ; Zhang J
    Mol Biol Evol; 2019 Feb; 36(2):412-422. PubMed ID: 30535029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome wide analysis of meiotic recombination in yeast: For a few SNPs more.
    Chakraborty P; Pankajam AV; Dutta A; Nishant KT
    IUBMB Life; 2018 Aug; 70(8):743-752. PubMed ID: 29934971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of
    Raffoux X; Bourge M; Dumas F; Martin OC; Falque M
    Genetics; 2018 Dec; 210(4):1213-1226. PubMed ID: 30291109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of mutational robustness in the yeast genome: a link to essential genes and meiotic recombination hotspots.
    Keller PJ; Knop M
    PLoS Genet; 2009 Jun; 5(6):e1000533. PubMed ID: 19557188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Support vector machine for classification of meiotic recombination hotspots and coldspots in Saccharomyces cerevisiae based on codon composition.
    Zhou T; Weng J; Sun X; Lu Z
    BMC Bioinformatics; 2006 Apr; 7():223. PubMed ID: 16640774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High frequency of microsatellites in S. cerevisiae meiotic recombination hotspots.
    Bagshaw AT; Pitt JP; Gemmell NJ
    BMC Genomics; 2008 Jan; 9():49. PubMed ID: 18226240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7.
    Akao T; Yashiro I; Hosoyama A; Kitagaki H; Horikawa H; Watanabe D; Akada R; Ando Y; Harashima S; Inoue T; Inoue Y; Kajiwara S; Kitamoto K; Kitamoto N; Kobayashi O; Kuhara S; Masubuchi T; Mizoguchi H; Nakao Y; Nakazato A; Namise M; Oba T; Ogata T; Ohta A; Sato M; Shibasaki S; Takatsume Y; Tanimoto S; Tsuboi H; Nishimura A; Yoda K; Ishikawa T; Iwashita K; Fujita N; Shimoi H
    DNA Res; 2011 Dec; 18(6):423-34. PubMed ID: 21900213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic identification of balanced transposition polymorphisms in Saccharomyces cerevisiae.
    Faddah DA; Ganko EW; McCoach C; Pickrell JK; Hanlon SE; Mann FG; Mieczkowska JO; Jones CD; Lieb JD; Vision TJ
    PLoS Genet; 2009 Jun; 5(6):e1000502. PubMed ID: 19503594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production.
    Argueso JL; Carazzolle MF; Mieczkowski PA; Duarte FM; Netto OV; Missawa SK; Galzerani F; Costa GG; Vidal RO; Noronha MF; Dominska M; Andrietta MG; Andrietta SR; Cunha AF; Gomes LH; Tavares FC; Alcarde AR; Dietrich FS; McCusker JH; Petes TD; Pereira GA
    Genome Res; 2009 Dec; 19(12):2258-70. PubMed ID: 19812109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of sequence divergence between alleles of the human MS205 minisatellite incorporated into the yeast genome on length-mutation rates and lethal recombination events during meiosis.
    He Q; Cederberg H; Rannug U
    J Mol Biol; 2002 May; 319(2):315-27. PubMed ID: 12051909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in crossover frequencies perturb crossover assurance without affecting meiotic chromosome segregation in Saccharomyces cerevisiae.
    Krishnaprasad GN; Anand MT; Lin G; Tekkedil MM; Steinmetz LM; Nishant KT
    Genetics; 2015 Feb; 199(2):399-412. PubMed ID: 25467183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Tn3 beta-lactamase gene acts as a hotspot for meiotic recombination in yeast.
    Stapleton A; Petes TD
    Genetics; 1991 Jan; 127(1):39-51. PubMed ID: 1849855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-dependent prediction of recombination hotspots in Saccharomyces cerevisiae.
    Liu G; Liu J; Cui X; Cai L
    J Theor Biol; 2012 Jan; 293():49-54. PubMed ID: 22016025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.