These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 21966978)
1. Acoustic startle hypersensitivity in Mceph mice and its effect on hippocampal excitability. Fisahn A; Lavebratt C; Canlon B Eur J Neurosci; 2011 Oct; 34(7):1121-30. PubMed ID: 21966978 [TBL] [Abstract][Full Text] [Related]
2. A truncated Kv1.1 protein in the brain of the megencephaly mouse: expression and interaction. Persson AS; Klement G; Almgren M; Sahlholm K; Nilsson J; Petersson S; Arhem P; Schalling M; Lavebratt C BMC Neurosci; 2005 Nov; 6():65. PubMed ID: 16305740 [TBL] [Abstract][Full Text] [Related]
3. Lack of potassium channel induces proliferation and survival causing increased neurogenesis and two-fold hippocampus enlargement. Almgren M; Persson AS; Fenghua C; Witgen BM; Schalling M; Nyengaard JR; Lavebratt C Hippocampus; 2007; 17(4):292-304. PubMed ID: 17315199 [TBL] [Abstract][Full Text] [Related]
4. Kv1.1-dependent control of hippocampal neuron number as revealed by mosaic analysis with double markers. Yang SB; Mclemore KD; Tasic B; Luo L; Jan YN; Jan LY J Physiol; 2012 Jun; 590(11):2645-58. PubMed ID: 22411008 [TBL] [Abstract][Full Text] [Related]
6. Truncation of the Shaker-like voltage-gated potassium channel, Kv1.1, causes megencephaly. Petersson S; Persson AS; Johansen JE; Ingvar M; Nilsson J; Klement G; Arhem P; Schalling M; Lavebratt C Eur J Neurosci; 2003 Dec; 18(12):3231-40. PubMed ID: 14686897 [TBL] [Abstract][Full Text] [Related]
7. Kv1.1 null mice have enlarged hippocampus and ventral cortex. Persson AS; Westman E; Wang FH; Khan FH; Spenger C; Lavebratt C BMC Neurosci; 2007 Jan; 8():10. PubMed ID: 17250763 [TBL] [Abstract][Full Text] [Related]
8. Evidence for presence and functional effects of Kv1.1 channels in β-cells: general survey and results from mceph/mceph mice. Ma Z; Lavebratt C; Almgren M; Portwood N; Forsberg LE; Bränström R; Berglund E; Falkmer S; Sundler F; Wierup N; Björklund A PLoS One; 2011 Apr; 6(4):e18213. PubMed ID: 21483673 [TBL] [Abstract][Full Text] [Related]
9. Carbamazepine protects against neuronal hyperplasia and abnormal gene expression in the megencephaly mouse. Almgren M; Nyengaard JR; Persson B; Lavebratt C Neurobiol Dis; 2008 Dec; 32(3):364-76. PubMed ID: 18773962 [TBL] [Abstract][Full Text] [Related]
10. MRI and in situ hybridization reveal early disturbances in brain size and gene expression in the megencephalic (mceph/mceph) mouse. Diez M; Schweinhardt P; Petersson S; Wang FH; Lavebratt C; Schalling M; Hökfelt T; Spenger C Eur J Neurosci; 2003 Dec; 18(12):3218-30. PubMed ID: 14686896 [TBL] [Abstract][Full Text] [Related]
11. Does Valproic Acid/Na Valproate Suppress Auditory Startle Reflex in Patients With Epilepsy? Kızıltan ME; Leba LK; Gündüz A; Pazarcı N; Özkara Ç; Yeni N Clin EEG Neurosci; 2018 Nov; 49(6):407-413. PubMed ID: 29262725 [TBL] [Abstract][Full Text] [Related]
12. The megencephaly mouse has disturbances in the insulin-like growth factor (IGF) system. Petersson S; Sandberg Nordqvist A; Schalling M; Lavebratt C Brain Res Mol Brain Res; 1999 Sep; 72(1):80-8. PubMed ID: 10521601 [TBL] [Abstract][Full Text] [Related]
13. Carbamazepine protects against megencephaly and abnormal expression of BDNF and Nogo signaling components in the mceph/mceph mouse. Lavebratt C; Trifunovski A; Persson AS; Wang FH; Klason T; Ohman I; Josephsson A; Olson L; Spenger C; Schalling M Neurobiol Dis; 2006 Nov; 24(2):374-83. PubMed ID: 16990009 [TBL] [Abstract][Full Text] [Related]
14. Mice deficient for the extracellular matrix glycoprotein tenascin-r show physiological and structural hallmarks of increased hippocampal excitability, but no increased susceptibility to seizures in the pilocarpine model of epilepsy. Brenneke F; Bukalo O; Dityatev A; Lie AA Neuroscience; 2004; 124(4):841-55. PubMed ID: 15026125 [TBL] [Abstract][Full Text] [Related]
15. A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. Meserve JH; Nelson JC; Marsden KC; Hsu J; Echeverry FA; Jain RA; Wolman MA; Pereda AE; Granato M PLoS Genet; 2021 Jun; 17(6):e1008943. PubMed ID: 34061829 [TBL] [Abstract][Full Text] [Related]
16. KCNQ4 potassium channel subunit deletion leads to exaggerated acoustic startle reflex in mice. Maamrah B; Pocsai K; Bayasgalan T; Csemer A; Pál B Neuroreport; 2023 Mar; 34(4):232-237. PubMed ID: 36789839 [TBL] [Abstract][Full Text] [Related]
17. Structural consequences of Kcna1 gene deletion and transfer in the mouse hippocampus. Wenzel HJ; Vacher H; Clark E; Trimmer JS; Lee AL; Sapolsky RM; Tempel BL; Schwartzkroin PA Epilepsia; 2007 Nov; 48(11):2023-46. PubMed ID: 17651419 [TBL] [Abstract][Full Text] [Related]
18. Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. Holth JK; Bomben VC; Reed JG; Inoue T; Younkin L; Younkin SG; Pautler RG; Botas J; Noebels JL J Neurosci; 2013 Jan; 33(4):1651-9. PubMed ID: 23345237 [TBL] [Abstract][Full Text] [Related]
19. Synchronous hippocampal bursting reveals network excitability defects in an epilepsy gene mutation. Helekar SA; Noebels JL Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4736-40. PubMed ID: 2052555 [TBL] [Abstract][Full Text] [Related]
20. Independent mechanisms of potassium clearance by astrocytes in gliotic tissue. Walz W; Wuttke WA J Neurosci Res; 1999 Jun; 56(6):595-603. PubMed ID: 10374814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]