These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21967128)

  • 1. Electron beam irradiation stiffens zinc tin oxide nanowires.
    Zang J; Bao L; Webb RA; Li X
    Nano Lett; 2011 Nov; 11(11):4885-9. PubMed ID: 21967128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive indium-tin oxide nanowire and nanotube arrays made by electrochemically assisted deposition in template membranes: switching between wire and tube growth modes by surface chemical modification of the template.
    Kovtyukhova NI; Mallouk TE
    Nanoscale; 2011 Apr; 3(4):1541-52. PubMed ID: 21279193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photostable Zn2SnO4 nanowire transistors for transparent displays.
    Lim T; Kim H; Meyyappan M; Ju S
    ACS Nano; 2012 Jun; 6(6):4912-20. PubMed ID: 22578094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescence and photoconductivity of ZnS-coated ZnO nanowires.
    Bera A; Basak D
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):408-12. PubMed ID: 20356186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission electron microscopy in situ fabrication of ZnO/Al2O3 composite nanotubes by electron-beam-irradiation-induced local etching of ZnO/Al2O3 core/shell nanowires.
    Yang Y; Scholz R; Berger A; Kim DS; Knez M; Hesse D; Gösele U; Zacharias M
    Small; 2008 Dec; 4(12):2112-7. PubMed ID: 18989863
    [No Abstract]   [Full Text] [Related]  

  • 6. Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K.
    Chiu SP; Chung HF; Lin YH; Kai JJ; Chen FR; Lin JJ
    Nanotechnology; 2009 Mar; 20(10):105203. PubMed ID: 19417513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-photon excited ultraviolet photoluminescence of zinc oxide nanorods.
    Zhu G; Xu C; Zhu J; Lu C; Cui Y; Sun X
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5854-7. PubMed ID: 19198316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Getting to the core of the problem: origin of the luminescence from (Mg,Zn)O heterostructured nanowires.
    Rosenberg RA; Shenoy GK; Chisholm MF; Tien LC; Norton D; Pearton S
    Nano Lett; 2007 Jun; 7(6):1521-5. PubMed ID: 17530910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.
    Leschkies KS; Divakar R; Basu J; Enache-Pommer E; Boercker JE; Carter CB; Kortshagen UR; Norris DJ; Aydil ES
    Nano Lett; 2007 Jun; 7(6):1793-8. PubMed ID: 17503867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of zinc tin oxide (ZTO) nanocrystallites at room temperature through association with peptide-containing bolaamphiphile molecules.
    Ahn S; Kwon TG; Lee SY
    J Colloid Interface Sci; 2011 Oct; 362(2):292-9. PubMed ID: 21816408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemical immunoassay of interleukin-6 based on covalent reaction-triggered photocurrent polarity switching of ZnO@fullerenol.
    Zhou M; Ying Y; Huang H; Tan Y; Deng W; Xie Q
    Chem Commun (Camb); 2021 Oct; 57(83):10903-10906. PubMed ID: 34590104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteria-Directed Construction of ZnO/CdS Hollow Rods and Their Enhanced Photocatalytic Activity.
    Ge S; Zhang Q; Wang X; Shao Q; Bao L; Ding R; Liu Q
    J Nanosci Nanotechnol; 2016 May; 16(5):4929-35. PubMed ID: 27483848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doping-dependent electrical characteristics of SnO2 nanowires.
    Wan Q; Dattoli E; Lu W
    Small; 2008 Apr; 4(4):451-4. PubMed ID: 18383191
    [No Abstract]   [Full Text] [Related]  

  • 14. Stable p-type conduction from Sb-decorated head-to-head basal plane inversion domain boundaries in ZnO nanowires.
    Yankovich AB; Puchala B; Wang F; Seo JH; Morgan D; Wang X; Ma Z; Kvit AV; Voyles PM
    Nano Lett; 2012 Mar; 12(3):1311-6. PubMed ID: 22268642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration.
    Lin CH; Chen TT; Chen YF
    Opt Express; 2008 Oct; 16(21):16916-22. PubMed ID: 18852799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lasing dynamics in single ZnO nanorods.
    Fallert J; Stelzl F; Zhou H; Reiser A; Thonke K; Sauer R; Klingshirn C; Kalt H
    Opt Express; 2008 Jan; 16(2):1125-31. PubMed ID: 18542186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZnO nanowires hydrothermally grown on PET polymer substrates and their characteristics.
    Lee CY; Li SY; Lin P; Tseng TY
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1088-94. PubMed ID: 16108432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The elastic moduli of oriented tin oxide nanowires.
    Barth S; Harnagea C; Mathur S; Rosei F
    Nanotechnology; 2009 Mar; 20(11):115705. PubMed ID: 19420453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental-computational investigation of ZnO nanowires strength and fracture.
    Agrawal R; Peng B; Espinosa HD
    Nano Lett; 2009 Dec; 9(12):4177-83. PubMed ID: 19791795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.
    Kim J; Kim SI; Cho SH; Hwang S; Lee YH; Hur J
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8706-10. PubMed ID: 26726580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.