These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21967485)

  • 1. The plasma membrane is involved in the visible light-tissue interaction.
    Lavi R; Ankri R; Sinyakov M; Eichler M; Friedmann H; Shainberg A; Breitbart H; Lubart R
    Photomed Laser Surg; 2012 Jan; 30(1):14-9. PubMed ID: 21967485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavins are source of visible-light-induced free radical formation in cells.
    Eichler M; Lavi R; Shainberg A; Lubart R
    Lasers Surg Med; 2005 Oct; 37(4):314-9. PubMed ID: 16196041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed analysis of reactive oxygen species induced by visible light in various cell types.
    Lavi R; Shainberg A; Shneyvays V; Hochauser E; Isaac A; Zinman T; Friedmann H; Lubart R
    Lasers Surg Med; 2010 Aug; 42(6):473-80. PubMed ID: 20662023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation.
    Culcasi M; Benameur L; Mercier A; Lucchesi C; Rahmouni H; Asteian A; Casano G; Botta A; Kovacic H; Pietri S
    Chem Biol Interact; 2012 Sep; 199(3):161-76. PubMed ID: 22940227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of 635 nm light-emitting diode irradiation on intracellular superoxide anion scavenging independent of the cellular enzymatic antioxidant system.
    Lim W; Kim J; Lim C; Kim S; Jeon S; Karna S; Cho M; Choi H; Kim O
    Photomed Laser Surg; 2012 Aug; 30(8):451-9. PubMed ID: 22775489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis of reactive oxygen species generated by the in vitro reconstituted NADPH oxidase and xanthine oxidase systems.
    Sato E; Mokudai T; Niwano Y; Kohno M
    J Biochem; 2011 Aug; 150(2):173-81. PubMed ID: 21572100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red light-induced redox reactions in cells observed with TEMPO.
    Eichler M; Lavi R; Friedmann H; Shainberg A; Lubart R
    Photomed Laser Surg; 2007 Jun; 25(3):170-4. PubMed ID: 17603856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of visible light and ultraviolet irradiation on motility and fertility of mammalian and fish sperm.
    Zan-Bar T; Bartoov B; Segal R; Yehuda R; Lavi R; Lubart R; Avtalion RR
    Photomed Laser Surg; 2005 Dec; 23(6):549-55. PubMed ID: 16356145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible light induces nitric oxide (NO) formation in sperm and endothelial cells.
    Ankri R; Friedman H; Savion N; Kotev-Emeth S; Breitbart H; Lubart R
    Lasers Surg Med; 2010 Apr; 42(4):348-52. PubMed ID: 19790248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen radicals produced by plant plasma membranes: an EPR spin-trap study.
    Mojović M; Vuletić M; Bacić GG; Vucinić Z
    J Exp Bot; 2004 Dec; 55(408):2523-31. PubMed ID: 15448175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of reactive oxygen species generation by photoexcitation of PEGylated quantum dots.
    Yaghini E; Pirker KF; Kay CW; Seifalian AM; MacRobert AJ
    Small; 2014 Dec; 10(24):5106-15. PubMed ID: 25164061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron paramagnetic resonance and spin trapping investigations of the photoreactivity of human lens proteins.
    Dillon J; Ortwerth BJ; Chignell CF; Reszka KJ
    Photochem Photobiol; 1999 Feb; 69(2):259-64. PubMed ID: 10048318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of spin trapping agents and trapping conditions for detection of cell-generated reactive oxygen species.
    Shi H; Timmins G; Monske M; Burdick A; Kalyanaraman B; Liu Y; Clément JL; Burchiel S; Liu KJ
    Arch Biochem Biophys; 2005 May; 437(1):59-68. PubMed ID: 15820217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The different behavior of rutile and anatase nanoparticles in forming oxy radicals upon illumination with visible light: an EPR study.
    Lipovsky A; Levitski L; Tzitrinovich Z; Gedanken A; Lubart R
    Photochem Photobiol; 2012; 88(1):14-20. PubMed ID: 21988075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of free radicals and reactive oxygen species.
    Hideg E
    Methods Mol Biol; 2004; 274():249-60. PubMed ID: 15187284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodynamic action of C-phycocyanins obtained from marine and fresh water cyanobacterial cultures: a comparative study using EPR spin trapping technique.
    Paul BT; Patel A; Selvam GS; Mishra S; Ghosh PK; Murugesan R
    Free Radic Res; 2006 Aug; 40(8):821-5. PubMed ID: 17015260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous production of superoxide radical and singlet oxygen by sulphonated chloroaluminum phthalocyanine incorporated in human low-density lipoproteins: implications for photodynamic therapy.
    Martins J; Almeida L; Laranjinha J
    Photochem Photobiol; 2004; 80(2):267-73. PubMed ID: 15362945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct detection of free radicals and reactive oxygen species in thylakoids.
    Hideg E; Kálai T; Hideg K
    Methods Mol Biol; 2011; 684():187-200. PubMed ID: 20960131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S; Kotake Y; Humphries KM
    Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.