These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21967622)

  • 1. Noninvasive detection of concealed explosives: depth profiling through opaque plastics by time-resolved Raman spectroscopy.
    Petterson IE; López-López M; García-Ruiz C; Gooijer C; Buijs JB; Ariese F
    Anal Chem; 2011 Nov; 83(22):8517-23. PubMed ID: 21967622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers.
    Iping Petterson IE; Dvořák P; Buijs JB; Gooijer C; Ariese F
    Analyst; 2010 Dec; 135(12):3255-9. PubMed ID: 20941438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media.
    Ariese F; Meuzelaar H; Kerssens MM; Buijs JB; Gooijer C
    Analyst; 2009 Jun; 134(6):1192-7. PubMed ID: 19475147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standoff Raman spectrometry for the non-invasive detection of explosives precursors in highly fluorescing packaging.
    Izake EL; Sundarajoo S; Olds W; Cletus B; Jaatinen E; Fredericks PM
    Talanta; 2013 Jan; 103():20-7. PubMed ID: 23200353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stand-off spatial offset Raman spectroscopy for the detection of concealed content in distant objects.
    Zachhuber B; Gasser C; Chrysostom Et; Lendl B
    Anal Chem; 2011 Dec; 83(24):9438-42. PubMed ID: 22047672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.
    Izake EL; Cletus B; Olds W; Sundarajoo S; Fredericks PM; Jaatinen E
    Talanta; 2012 May; 94():342-7. PubMed ID: 22608458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).
    Moore S; Maccrehan W; Schantz M
    Forensic Sci Int; 2011 Oct; 212(1-3):90-5. PubMed ID: 21696900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SERS substrate for detection of explosives.
    Chou A; Jaatinen E; Buividas R; Seniutinas G; Juodkazis S; Izake EL; Fredericks PM
    Nanoscale; 2012 Dec; 4(23):7419-24. PubMed ID: 23085837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterization of an electrostatic particle sampling system for the selective collection of trace explosives.
    Beer S; Müller G; Wöllenstein J
    Talanta; 2012 Jan; 89():441-7. PubMed ID: 22284515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ detection of single particles of explosive on clothing with confocal Raman microscopy.
    Ali EM; Edwards HG; Scowen IJ
    Talanta; 2009 May; 78(3):1201-3. PubMed ID: 19269494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman chemical imaging of explosive-contaminated fingerprints.
    Emmons ED; Tripathi A; Guicheteau JA; Christesen SD; Fountain AW
    Appl Spectrosc; 2009 Nov; 63(11):1197-203. PubMed ID: 19891827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform.
    Moros J; Lorenzo JA; Lucena P; Tobaria LM; Laserna JJ
    Anal Chem; 2010 Feb; 82(4):1389-400. PubMed ID: 20085236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and mapping of trace explosives on surfaces under ambient conditions using multiphoton electron extraction spectroscopy (MEES).
    Tang S; Vinerot N; Fisher D; Bulatov V; Yavetz-Chen Y; Schechter I
    Talanta; 2016 Aug; 155():235-44. PubMed ID: 27216679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and discrimination of low concentration explosives using MOS nanoparticle sensors.
    Gui Y; Xie C; Xu J; Wang G
    J Hazard Mater; 2009 May; 164(2-3):1030-5. PubMed ID: 18930348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stand-off detection of explosives particles by multispectral imaging Raman spectroscopy.
    Östmark H; Nordberg M; Carlsson TE
    Appl Opt; 2011 Oct; 50(28):5592-9. PubMed ID: 22016229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth profiling for the identification of unknown substances and concealed content at remote distances using time-resolved stand-off Raman spectroscopy.
    Zachhuber B; Gasser C; Ramer G; Chrysostom Et; Lendl B
    Appl Spectrosc; 2012 Aug; 66(8):875-81. PubMed ID: 22800681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive detection of concealed liquid explosives using Raman spectroscopy.
    Eliasson C; Macleod NA; Matousek P
    Anal Chem; 2007 Nov; 79(21):8185-9. PubMed ID: 17880183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives.
    Piorek BD; Lee SJ; Moskovits M; Meinhart CD
    Anal Chem; 2012 Nov; 84(22):9700-5. PubMed ID: 23067072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forensic and homeland security applications of modern portable Raman spectroscopy.
    Izake EL
    Forensic Sci Int; 2010 Oct; 202(1-3):1-8. PubMed ID: 20395087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.
    Sheaff CN; Eastwood D; Wai CM
    Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.