These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 21967710)
1. Fermentation of Chlorella sp. for anaerobic bio-hydrogen production: influences of inoculum-substrate ratio, volatile fatty acids and NADH. Sun J; Yuan X; Shi X; Chu C; Guo R; Kong H Bioresour Technol; 2011 Nov; 102(22):10480-5. PubMed ID: 21967710 [TBL] [Abstract][Full Text] [Related]
2. Effects of initial lactic acid concentration, HRTs, and OLRs on bio-hydrogen production from lactate-type fermentation. Kim TH; Lee Y; Chang KH; Hwang SJ Bioresour Technol; 2012 Jan; 103(1):136-41. PubMed ID: 22071244 [TBL] [Abstract][Full Text] [Related]
3. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Hu B; Min M; Zhou W; Du Z; Mohr M; Chen P; Zhu J; Cheng Y; Liu Y; Ruan R Bioresour Technol; 2012 Dec; 126():71-9. PubMed ID: 23073091 [TBL] [Abstract][Full Text] [Related]
4. Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Song W; Rashid N; Choi W; Lee K Bioresour Technol; 2011 Sep; 102(18):8676-81. PubMed ID: 21398113 [TBL] [Abstract][Full Text] [Related]
5. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Buitrón G; Carvajal C Bioresour Technol; 2010 Dec; 101(23):9071-7. PubMed ID: 20655747 [TBL] [Abstract][Full Text] [Related]
6. Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures. Zhou Z; Yu Z; Meng Q Bioresour Technol; 2012 Jan; 103(1):173-9. PubMed ID: 22047657 [TBL] [Abstract][Full Text] [Related]
7. Influence of iron on sulfide inhibition in dark biohydrogen fermentation. Dhar BR; Elbeshbishy E; Nakhla G Bioresour Technol; 2012 Dec; 126():123-30. PubMed ID: 23073098 [TBL] [Abstract][Full Text] [Related]
8. Volatile fatty acids production from protease pretreated Chlorella biomass via anaerobic digestion. Magdalena JA; Tomás-Pejó E; Ballesteros M; González-Fernandez C Biotechnol Prog; 2018 Nov; 34(6):1363-1369. PubMed ID: 30281953 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Wang K; Yin J; Shen D; Li N Bioresour Technol; 2014 Jun; 161():395-401. PubMed ID: 24727700 [TBL] [Abstract][Full Text] [Related]
10. Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation. Xiao B; Liu J J Hazard Mater; 2009 Aug; 168(1):163-7. PubMed ID: 19278778 [TBL] [Abstract][Full Text] [Related]
11. Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Fei Q; Fu R; Shang L; Brigham CJ; Chang HN Bioprocess Biosyst Eng; 2015 Apr; 38(4):691-700. PubMed ID: 25332127 [TBL] [Abstract][Full Text] [Related]
12. Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production. Carver SM; Hulatt CJ; Thomas DN; Tuovinen OH Biodegradation; 2011 Jul; 22(4):805-14. PubMed ID: 20878208 [TBL] [Abstract][Full Text] [Related]
13. Effects of key operational parameters on biohydrogen production via anaerobic fermentation in a sequencing batch reactor. Won SG; Lau AK Bioresour Technol; 2011 Jul; 102(13):6876-83. PubMed ID: 21530239 [TBL] [Abstract][Full Text] [Related]
14. Effects of volatile fatty acids on a thermophilic anaerobic hydrogen fermentation process degrading peptone. Cheng SS; Chang SM; Chen ST Water Sci Technol; 2002; 46(4-5):209-14. PubMed ID: 12361012 [TBL] [Abstract][Full Text] [Related]
15. Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Zhu J; Wan C; Li Y Bioresour Technol; 2010 Oct; 101(19):7523-8. PubMed ID: 20494572 [TBL] [Abstract][Full Text] [Related]
16. The effect of mono- and multiple fermentation parameters on volatile fatty acids (VFAs) production from chicken manure via anaerobic digestion. Yin DM; Mahboubi A; Wainaina S; Qiao W; Taherzadeh MJ Bioresour Technol; 2021 Jun; 330():124992. PubMed ID: 33744736 [TBL] [Abstract][Full Text] [Related]
17. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis. Jones RJ; Massanet-Nicolau J; Guwy A; Premier GC; Dinsdale RM; Reilly M Bioresour Technol; 2015 Aug; 189():279-284. PubMed ID: 25898090 [TBL] [Abstract][Full Text] [Related]
18. Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Pobeheim H; Munk B; Lindorfer H; Guebitz GM Water Res; 2011 Jan; 45(2):781-7. PubMed ID: 20875911 [TBL] [Abstract][Full Text] [Related]
19. Bioconversion of wheat stalk to hydrogen by dark fermentation: effect of different mixed microflora on hydrogen yield and cellulose solubilisation. Wei Y; Yuan X; Shi X; Chu Y; Guo R Bioresour Technol; 2011 Feb; 102(4):3805-9. PubMed ID: 21177102 [TBL] [Abstract][Full Text] [Related]
20. Reduction of accumulated volatile fatty acids by an acetate-degrading enrichment culture. Lins P; Malin C; Wagner AO; Illmer P FEMS Microbiol Ecol; 2010 Mar; 71(3):469-78. PubMed ID: 20030719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]