BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 21967717)

  • 1. Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application.
    Cha TS; Chen JW; Goh EG; Aziz A; Loh SH
    Bioresour Technol; 2011 Nov; 102(22):10633-40. PubMed ID: 21967717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase.
    Jusoh M; Loh SH; Chuah TS; Aziz A; Cha TS
    Phytochemistry; 2015 Mar; 111():65-71. PubMed ID: 25583439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of oil-producing algae as potential biodiesel feedstock.
    Zhou X; Ge H; Xia L; Zhang D; Hu C
    Bioresour Technol; 2013 Apr; 134():24-9. PubMed ID: 23500555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of heterotrophic cultivation of Chlorella sp. for oil production.
    Xie T; Sun Y; Du K; Liang B; Cheng R; Zhang Y
    Bioresour Technol; 2012 Aug; 118():235-42. PubMed ID: 22705529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gibberellin Promotes Cell Growth and Induces Changes in Fatty Acid Biosynthesis and Upregulates Fatty Acid Biosynthetic Genes in Chlorella vulgaris UMT-M1.
    Jusoh M; Loh SH; Aziz A; Cha TS
    Appl Biochem Biotechnol; 2019 Jun; 188(2):450-459. PubMed ID: 30536033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides.
    Heredia-Arroyo T; Wei W; Hu B
    Appl Biochem Biotechnol; 2010 Nov; 162(7):1978-95. PubMed ID: 20443076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of inorganic carbon concentration on carbon formation, nitrate utilization, biomass and oil accumulation of Nannochloropsis oculata CS 179.
    Lin Q; Gu N; Li G; Lin J; Huang L; Tan L
    Bioresour Technol; 2012 May; 111():353-9. PubMed ID: 22386465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid profiling and molecular characterization of some freshwater microalgae from India with potential for biodiesel production.
    Kaur S; Sarkar M; Srivastava RB; Gogoi HK; Kalita MC
    N Biotechnol; 2012 Feb; 29(3):332-44. PubMed ID: 22044601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, Identification and High-Throughput Screening of Neutral Lipid Producing Indigenous Microalgae from South African Aquatic Habitats.
    Gumbi ST; Majeke BM; Olaniran AO; Mutanda T
    Appl Biochem Biotechnol; 2017 May; 182(1):382-399. PubMed ID: 27864781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis.
    Zhu S; Huang W; Xu J; Wang Z; Xu J; Yuan Z
    Bioresour Technol; 2014; 152():292-8. PubMed ID: 24308944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels.
    Tang D; Han W; Li P; Miao X; Zhong J
    Bioresour Technol; 2011 Feb; 102(3):3071-6. PubMed ID: 21041075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting the growth and the oil accumulation of marine microalgae, Tetraselmis suecica.
    Go S; Lee SJ; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):145-50. PubMed ID: 22011884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.
    Yeh KL; Chang JS
    Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels.
    Wu H; Miao X
    Bioresour Technol; 2014 Oct; 170():421-427. PubMed ID: 25164333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Culture of microalgae Chlorella minutissima for biodiesel feedstock production.
    Tang H; Chen M; Garcia ME; Abunasser N; Ng KY; Salley SO
    Biotechnol Bioeng; 2011 Oct; 108(10):2280-7. PubMed ID: 21495011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new Arctic Chlorella species for biodiesel production.
    Ahn JW; Hwangbo K; Lee SY; Choi HG; Park YI; Liu JR; Jeong WJ
    Bioresour Technol; 2012 Dec; 125():340-3. PubMed ID: 23069611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-step in situ biodiesel production from microalgae with high free fatty acid content.
    Dong T; Wang J; Miao C; Zheng Y; Chen S
    Bioresour Technol; 2013 May; 136():8-15. PubMed ID: 23548399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol.
    Chen YH; Walker TH
    Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-catalytic hydropyrolysis of microalgae to produce liquid biofuels.
    Duan P; Bai X; Xu Y; Zhang A; Wang F; Zhang L; Miao J
    Bioresour Technol; 2013 May; 136():626-34. PubMed ID: 23567740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.