These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
701 related articles for article (PubMed ID: 21967752)
1. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry. Gao G; Vecitis CD Environ Sci Technol; 2011 Nov; 45(22):9726-34. PubMed ID: 21967752 [TBL] [Abstract][Full Text] [Related]
2. Doped carbon nanotube networks for electrochemical filtration of aqueous phenol: electrolyte precipitation and phenol polymerization. Gao G; Vecitis CD ACS Appl Mater Interfaces; 2012 Mar; 4(3):1478-89. PubMed ID: 22313807 [TBL] [Abstract][Full Text] [Related]
3. Bismuth-doped tin oxide-coated carbon nanotube network: improved anode stability and efficiency for flow-through organic electrooxidation. Liu H; Vajpayee A; Vecitis CD ACS Appl Mater Interfaces; 2013 Oct; 5(20):10054-66. PubMed ID: 24040859 [TBL] [Abstract][Full Text] [Related]
4. Insights into estrogenic activity removal using carbon nanotube electrochemical filter. Cunha GDS; Souza-Chaves BM; Bila DM; Bassin JP; Vecitis CD; Dezotti M Sci Total Environ; 2019 Aug; 678():448-456. PubMed ID: 31077923 [TBL] [Abstract][Full Text] [Related]
5. Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides. Yang SY; Vecitis CD; Park H Environ Sci Pollut Res Int; 2019 Jan; 26(2):1036-1043. PubMed ID: 28132189 [TBL] [Abstract][Full Text] [Related]
6. Degradation of the Common Aqueous Antibiotic Tetracycline using a Carbon Nanotube Electrochemical Filter. Liu Y; Liu H; Zhou Z; Wang T; Ong CN; Vecitis CD Environ Sci Technol; 2015 Jul; 49(13):7974-80. PubMed ID: 26056728 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes. Maldonado S; Morin S; Stevenson KJ Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092 [TBL] [Abstract][Full Text] [Related]
8. Rapid decontamination of tetracycline hydrolysis product using electrochemical CNT filter: Mechanism, impacting factors and pathways. Yang S; Liu Y; Shen C; Li F; Yang B; Huang M; Yang M; Wang Z; Sand W Chemosphere; 2020 Apr; 244():125525. PubMed ID: 31812051 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions. Bakr AR; Rahaman MS Chemosphere; 2016 Jun; 153():508-20. PubMed ID: 27035389 [TBL] [Abstract][Full Text] [Related]
10. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Jung JH; Hwang GB; Lee JE; Bae GN Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779 [TBL] [Abstract][Full Text] [Related]
17. Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media. Singh B; Murad L; Laffir F; Dickinson C; Dempsey E Nanoscale; 2011 Aug; 3(8):3334-49. PubMed ID: 21717025 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Fei S; Chen J; Yao S; Deng G; He D; Kuang Y Anal Biochem; 2005 Apr; 339(1):29-35. PubMed ID: 15766706 [TBL] [Abstract][Full Text] [Related]
19. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082 [TBL] [Abstract][Full Text] [Related]