These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 21967761)

  • 1. MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories.
    Schmidtke P; Bidon-Chanal A; Luque FJ; Barril X
    Bioinformatics; 2011 Dec; 27(23):3276-85. PubMed ID: 21967761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. fpocket: online tools for protein ensemble pocket detection and tracking.
    Schmidtke P; Le Guilloux V; Maupetit J; Tufféry P
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W582-9. PubMed ID: 20478829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fpocket: an open source platform for ligand pocket detection.
    Le Guilloux V; Schmidtke P; Tuffery P
    BMC Bioinformatics; 2009 Jun; 10():168. PubMed ID: 19486540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epock: rapid analysis of protein pocket dynamics.
    Laurent B; Chavent M; Cragnolini T; Dahl AC; Pasquali S; Derreumaux P; Sansom MS; Baaden M
    Bioinformatics; 2015 May; 31(9):1478-80. PubMed ID: 25505095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RapidRMSD: rapid determination of RMSDs corresponding to motions of flexible molecules.
    Neveu E; Popov P; Hoffmann A; Migliosi A; Besseron X; Danoy G; Bouvry P; Grudinin S
    Bioinformatics; 2018 Aug; 34(16):2757-2765. PubMed ID: 29554205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets.
    Ashford P; Moss DS; Alex A; Yeap SK; Povia A; Nobeli I; Williams MA
    BMC Bioinformatics; 2012 Mar; 13():39. PubMed ID: 22417279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. POVME 3.0: Software for Mapping Binding Pocket Flexibility.
    Wagner JR; Sørensen J; Hensley N; Wong C; Zhu C; Perison T; Amaro RE
    J Chem Theory Comput; 2017 Sep; 13(9):4584-4592. PubMed ID: 28800393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding and predicting druggability. A high-throughput method for detection of drug binding sites.
    Schmidtke P; Barril X
    J Med Chem; 2010 Aug; 53(15):5858-67. PubMed ID: 20684613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories.
    Jurcik A; Bednar D; Byska J; Marques SM; Furmanova K; Daniel L; Kokkonen P; Brezovsky J; Strnad O; Stourac J; Pavelka A; Manak M; Damborsky J; Kozlikova B
    Bioinformatics; 2018 Oct; 34(20):3586-3588. PubMed ID: 29741570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TRAPP: a tool for analysis of transient binding pockets in proteins.
    Kokh DB; Richter S; Henrich S; Czodrowski P; Rippmann F; Wade RC
    J Chem Inf Model; 2013 May; 53(5):1235-52. PubMed ID: 23621586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ConfID: an analytical method for conformational characterization of small molecules using molecular dynamics trajectories.
    Polêto MD; Grisci BI; Dorn M; Verli H
    Bioinformatics; 2020 Jun; 36(11):3576-3577. PubMed ID: 32105299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale comparison of four binding site detection algorithms.
    Schmidtke P; Souaille C; Estienne F; Baurin N; Kroemer RT
    J Chem Inf Model; 2010 Dec; 50(12):2191-200. PubMed ID: 20828173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational approach to de novo discovery of fragment binding for novel protein states.
    Konteatis ZD; Klon AE; Zou J; Meshkat S
    Methods Enzymol; 2011; 493():357-80. PubMed ID: 21371598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Druggability of dynamic protein-protein interfaces.
    Ulucan O; Eyrisch S; Helms V
    Curr Pharm Des; 2012; 18(30):4599-606. PubMed ID: 22650258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.
    Kokh DB; Czodrowski P; Rippmann F; Wade RC
    J Chem Theory Comput; 2016 Aug; 12(8):4100-13. PubMed ID: 27399277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures.
    Chovancova E; Pavelka A; Benes P; Strnad O; Brezovsky J; Kozlikova B; Gora A; Sustr V; Klvana M; Medek P; Biedermannova L; Sochor J; Damborsky J
    PLoS Comput Biol; 2012; 8(10):e1002708. PubMed ID: 23093919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere.
    Yu J; Zhou Y; Tanaka I; Yao M
    Bioinformatics; 2010 Jan; 26(1):46-52. PubMed ID: 19846440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph-Based Clustering of Predicted Ligand-Binding Pockets on Protein Surfaces.
    Degac J; Winter U; Helms V
    J Chem Inf Model; 2015 Sep; 55(9):1944-52. PubMed ID: 26325445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Protein Dynamics and Allostery Using Multi-Protein Atomic Distance Constraints.
    Greener JG; Filippis I; Sternberg MJE
    Structure; 2017 Mar; 25(3):546-558. PubMed ID: 28190781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of new Hsp90 inhibitors based on 3,4-isoxazolediamide scaffold using QSAR study, molecular docking and molecular dynamic simulation.
    Abbasi M; Sadeghi-Aliabadi H; Amanlou M
    Daru; 2017 Jun; 25(1):17. PubMed ID: 28666484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.