BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21967884)

  • 21. The kinetics of the reaction of nitrogen dioxide with iron(II)- and iron(III) cytochrome c.
    Domazou AS; Gebicka L; Didik J; Gebicki JL; van der Meijden B; Koppenol WH
    Free Radic Biol Med; 2014 Apr; 69():172-80. PubMed ID: 24447894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factors influencing protein tyrosine nitration--structure-based predictive models.
    Bayden AS; Yakovlev VA; Graves PR; Mikkelsen RB; Kellogg GE
    Free Radic Biol Med; 2011 Mar; 50(6):749-62. PubMed ID: 21172423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering specificity in a dynamic protein complex with a single conserved mutation.
    Bashir Q; Meulenbroek EM; Pannu NS; Ubbink M
    FEBS J; 2014 Nov; 281(21):4892-905. PubMed ID: 25180929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitration of internal tyrosine of cytochrome c probed by resonance Raman scattering.
    Quaroni L; Smith WE
    Biospectroscopy; 1999; 5(5 Suppl):S71-6. PubMed ID: 10512540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical properties of cytochrome c nitrated by peroxynitrite.
    Jang B; Han S
    Biochimie; 2006 Jan; 88(1):53-8. PubMed ID: 16040185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of peroxynitrite interaction with cytochrome c.
    Gebicka L; Didik J
    Acta Biochim Pol; 2003; 50(3):815-23. PubMed ID: 14515162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in the spin state and reactivity of cytochrome C induced by photochemically generated singlet oxygen and free radicals.
    Estevam ML; Nascimento OR; Baptista MS; Di Mascio P; Prado FM; Faljoni-Alario A; Zucchi Mdo R; Nantes IL
    J Biol Chem; 2004 Sep; 279(38):39214-22. PubMed ID: 15247265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and synthesis of de novo cytochromes c.
    Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y
    Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterologous overexpression and purification of cytochrome c' from Rhodobacter capsulatus and a mutant (K42E) in the dimerization region. Mutation does not alter oligomerization but impacts the heme iron spin state and nitric oxide binding properties.
    Huston WM; Andrew CR; Servid AE; McKay AL; Leech AP; Butler CS; Moir JW
    Biochemistry; 2006 Apr; 45(14):4388-95. PubMed ID: 16584174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Visible spectral character of heme iron in biomacromolecules].
    Li RQ; Chen Y; Jiang FY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):95-7. PubMed ID: 15768987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The nature of heme/iron-induced protein tyrosine nitration.
    Bian K; Gao Z; Weisbrodt N; Murad F
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5712-7. PubMed ID: 12709594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heme speciation in alkaline ferric FixL and possible tyrosine involvement in the signal transduction pathway for regulation of nitrogen fixation.
    Lukat-Rodgers GS; Rexine JL; Rodgers KR
    Biochemistry; 1998 Sep; 37(39):13543-52. PubMed ID: 9753440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis of mitochondrial dysfunction in response to cytochrome
    Moreno-Beltrán B; Guerra-Castellano A; Díaz-Quintana A; Del Conte R; García-Mauriño SM; Díaz-Moreno S; González-Arzola K; Santos-Ocaña C; Velázquez-Campoy A; De la Rosa MA; Turano P; Díaz-Moreno I
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):E3041-E3050. PubMed ID: 28348229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cofactor-dependent structural and binding properties of yeast cytochrome C peroxidase.
    Sterckx YG; Volkov AN
    Biochemistry; 2014 Jul; 53(28):4526-36. PubMed ID: 24964148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cytochrome c peroxidase and cytochrome c encounter complex: the other side of the story.
    Schilder J; Löhr F; Schwalbe H; Ubbink M
    FEBS Lett; 2014 May; 588(10):1873-8. PubMed ID: 24726731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The alkaline transition of cytochrome c revisited: Effects of electrostatic interactions and tyrosine nitration on the reaction dynamics.
    Oviedo-Rouco S; Castro MA; Alvarez-Paggi D; Spedalieri C; Tortora V; Tomasina F; Radi R; Murgida DH
    Arch Biochem Biophys; 2019 Apr; 665():96-106. PubMed ID: 30817907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo.
    Lee I; Salomon AR; Yu K; Doan JW; Grossman LI; Hüttemann M
    Biochemistry; 2006 Aug; 45(30):9121-8. PubMed ID: 16866357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A conformational switch to beta-sheet structure in cytochrome c leads to heme exposure. Implications for cardiolipin peroxidation and apoptosis.
    Balakrishnan G; Hu Y; Oyerinde OF; Su J; Groves JT; Spiro TG
    J Am Chem Soc; 2007 Jan; 129(3):504-5. PubMed ID: 17227009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an anti-apoptotic switch.
    García-Heredia JM; Díaz-Quintana A; Salzano M; Orzáez M; Pérez-Payá E; Teixeira M; De la Rosa MA; Díaz-Moreno I
    J Biol Inorg Chem; 2011 Dec; 16(8):1155-68. PubMed ID: 21706253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration.
    Dong F; Zhang X; Culver B; Chew HG; Kelley RO; Ren J
    Clin Sci (Lond); 2005 Sep; 109(3):277-86. PubMed ID: 15877545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.