These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 21968100)

  • 1. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish.
    Carten JD; Bradford MK; Farber SA
    Dev Biol; 2011 Dec; 360(2):276-85. PubMed ID: 21968100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism.
    Miyares RL; de Rezende VB; Farber SA
    Dis Model Mech; 2014 Jul; 7(7):915-27. PubMed ID: 24812437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of digestive physiology using fluorescent phospholipid reporters.
    Farber SA; Pack M; Ho SY; Johnson ID; Wagner DS; Dosch R; Mullins MC; Hendrickson HS; Hendrickson EK; Halpern ME
    Science; 2001 May; 292(5520):1385-8. PubMed ID: 11359013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An HPLC-CAD/fluorescence lipidomics platform using fluorescent fatty acids as metabolic tracers.
    Quinlivan VH; Wilson MH; Ruzicka J; Farber SA
    J Lipid Res; 2017 May; 58(5):1008-1020. PubMed ID: 28280113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters.
    Hama K; Provost E; Baranowski TC; Rubinstein AL; Anderson JL; Leach SD; Farber SA
    Am J Physiol Gastrointest Liver Physiol; 2009 Feb; 296(2):G445-53. PubMed ID: 19056761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking.
    Anderson JL; Carten JD; Farber SA
    Methods Cell Biol; 2016; 133():165-78. PubMed ID: 27263413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-fat Feeding Paradigm for Larval Zebrafish: Feeding, Live Imaging, and Quantification of Food Intake.
    Otis JP; Farber SA
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27842350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae.
    Schlegel A; Stainier DY
    Biochemistry; 2006 Dec; 45(51):15179-87. PubMed ID: 17176039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel system to quantify intestinal lipid digestion and transport.
    Sæle Ø; Rød KEL; Quinlivan VH; Li S; Farber SA
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Sep; 1863(9):948-957. PubMed ID: 29778665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei.
    Esteves A; Knoll-Gellida A; Canclini L; Silvarrey MC; André M; Babin PJ
    J Lipid Res; 2016 Feb; 57(2):219-32. PubMed ID: 26658423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and compartmentalization of fluorescent lipid analogs in larval Schistosoma mansoni.
    Furlong ST; Thibault KS; Morbelli LM; Quinn JJ; Rogers RA
    J Lipid Res; 1995 Jan; 36(1):1-12. PubMed ID: 7706934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying Lipid Metabolism and Transport During Zebrafish Development.
    Zeituni EM; Farber SA
    Methods Mol Biol; 2016; 1451():237-55. PubMed ID: 27464812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Endeavor to Find Starter Feed Alternatives and Techniques for Zebrafish First-Feeding Larvae: The Effects on Viability, Morphometric Traits, Digestive Enzymes, and Expression of Growth-Related Genes.
    Samaee SM; Atashbar Kangarloei B; Noori F; Estévez A
    Zebrafish; 2021 Feb; 18(1):73-91. PubMed ID: 33538651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton pump-rich cell secretes acid in skin of zebrafish larvae.
    Lin LY; Horng JL; Kunkel JG; Hwang PP
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C371-8. PubMed ID: 16148031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. I-FABP expression alters the intracellular distribution of the BODIPY C16 fatty acid analog.
    Karsenty J; Helal O; de la Porte PL; Beauclair-Deprez P; Martin-Elyazidi C; Planells R; Storch J; Gastaldi M
    Mol Cell Biochem; 2009 Jun; 326(1-2):97-104. PubMed ID: 19125316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of gastrointestinal physiology using a novel intestinal transit assay in zebrafish.
    Field HA; Kelley KA; Martell L; Goldstein AM; Serluca FC
    Neurogastroenterol Motil; 2009 Mar; 21(3):304-12. PubMed ID: 19140958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio): evidence for subfunctionalization or neofunctionalization of duplicated genes.
    Karanth S; Lall SP; Denovan-Wright EM; Wright JM
    BMC Evol Biol; 2009 Sep; 9():219. PubMed ID: 19725974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid Uptake, Metabolism, and Transport in the Larval Zebrafish.
    Quinlivan VH; Farber SA
    Front Endocrinol (Lausanne); 2017; 8():319. PubMed ID: 29209275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fluorophore structure and hydrophobicity on the uptake and metabolism of fluorescent lipid analogs.
    Naylor BL; Picardo M; Homan R; Pownall HJ
    Chem Phys Lipids; 1991; 58(1-2):111-9. PubMed ID: 1934193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new model system swims into focus: using the zebrafish to visualize intestinal metabolism in vivo.
    Carten JD; Farber SA
    Clin Lipidol; 2009 Aug; 4(4):501-515. PubMed ID: 20174460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.