These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 21968575)
1. Exploration of the valproic acid binding site on histone deacetylase 8 using docking and molecular dynamic simulations. Bermúdez-Lugo JA; Perez-Gonzalez O; Rosales-Hernández MC; Ilizaliturri-Flores I; Trujillo-Ferrara J; Correa-Basurto J J Mol Model; 2012 Jun; 18(6):2301-10. PubMed ID: 21968575 [TBL] [Abstract][Full Text] [Related]
2. Exploring the inhibitory activity of valproic acid against the HDAC family using an MMGBSA approach. Sixto-López Y; Bello M; Correa-Basurto J J Comput Aided Mol Des; 2020 Aug; 34(8):857-878. PubMed ID: 32180123 [TBL] [Abstract][Full Text] [Related]
3. HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. Ganai SA; Kalladi SM; Mahadevan V J Biomol Struct Dyn; 2015; 33(6):1185-97. PubMed ID: 25012937 [TBL] [Abstract][Full Text] [Related]
4. Exploring the potential binding sites of some known HDAC inhibitors on some HDAC8 conformers by docking studies. Sixto-López Y; Gómez-Vidal JA; Correa-Basurto J Appl Biochem Biotechnol; 2014 Aug; 173(7):1907-26. PubMed ID: 24888409 [TBL] [Abstract][Full Text] [Related]
6. Novel urushiol derivatives as HDAC8 inhibitors: rational design, virtual screening, molecular docking and molecular dynamics studies. Zhou H; Wang C; Deng T; Tao R; Li W J Biomol Struct Dyn; 2018 Jun; 36(8):1966-1978. PubMed ID: 28632421 [TBL] [Abstract][Full Text] [Related]
7. An insight into selective and potent inhibition of histone deacetylase 8 through induced-fit docking, pharmacophore modeling and QSAR studies. Kashyap K; Kakkar R J Biomol Struct Dyn; 2020 Jan; 38(1):48-65. PubMed ID: 30633630 [TBL] [Abstract][Full Text] [Related]
8. Docking Studies of Glutamine Valproic Acid Derivative (S)-5- amino-2-(heptan-4-ylamino)-5-oxopentanoic Acid (Gln-VPA) on HDAC8 with Biological Evaluation in HeLa Cells. Martínez-Ramos F; Luna-Palencia GR; Vásquez-Moctezuma I; Méndez-Luna D; Fragoso-Vázquez MJ; Trujillo-Ferrara J; Meraz-Ríos MA; Mendieta-Wejebe JE; Correa-Basurto J Anticancer Agents Med Chem; 2016; 16(11):1485-1490. PubMed ID: 26845132 [TBL] [Abstract][Full Text] [Related]
9. Toward selective histone deacetylase inhibitor design: homology modeling, docking studies, and molecular dynamics simulations of human class I histone deacetylases. Wang DF; Helquist P; Wiech NL; Wiest O J Med Chem; 2005 Nov; 48(22):6936-47. PubMed ID: 16250652 [TBL] [Abstract][Full Text] [Related]
10. Structural and energetic analysis to provide insight residues of CYP2C9, 2C11 and 2E1 involved in valproic acid dehydrogenation selectivity. Bello M; Mendieta-Wejebe JE; Correa-Basurto J Biochem Pharmacol; 2014 Jul; 90(2):145-58. PubMed ID: 24794636 [TBL] [Abstract][Full Text] [Related]
11. Teratogenic effects mediated by inhibition of histone deacetylases: evidence from quantitative structure activity relationships of 20 valproic acid derivatives. Eikel D; Lampen A; Nau H Chem Res Toxicol; 2006 Feb; 19(2):272-8. PubMed ID: 16485903 [TBL] [Abstract][Full Text] [Related]
12. Diarylcyclopropane hydroxamic acid inhibitors of histone deacetylase 4 designed by combinatorial approach and QM/MM calculations. Kollar J; Frecer V J Mol Graph Model; 2018 Oct; 85():97-110. PubMed ID: 30145395 [TBL] [Abstract][Full Text] [Related]
13. Dynamic structure-based pharmacophore model development: a new and effective addition in the histone deacetylase 8 (HDAC8) inhibitor discovery. Thangapandian S; John S; Lee Y; Kim S; Lee KW Int J Mol Sci; 2011; 12(12):9440-62. PubMed ID: 22272142 [TBL] [Abstract][Full Text] [Related]
14. Targeting AML1/ETO-histone deacetylase repressor complex: a novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells. Liu S; Klisovic RB; Vukosavljevic T; Yu J; Paschka P; Huynh L; Pang J; Neviani P; Liu Z; Blum W; Chan KK; Perrotti D; Marcucci G J Pharmacol Exp Ther; 2007 Jun; 321(3):953-60. PubMed ID: 17389244 [TBL] [Abstract][Full Text] [Related]
15. Comparative molecular dynamics simulations of histone deacetylase-like protein: binding modes and free energy analysis to hydroxamic acid inhibitors. Yan C; Xiu Z; Li X; Li S; Hao C; Teng H Proteins; 2008 Oct; 73(1):134-49. PubMed ID: 18398905 [TBL] [Abstract][Full Text] [Related]
16. A comparative study based on docking and molecular dynamics simulations over HDAC-tubulin dual inhibitors. Hassanzadeh M; Bagherzadeh K; Amanlou M J Mol Graph Model; 2016 Nov; 70():170-180. PubMed ID: 27750186 [TBL] [Abstract][Full Text] [Related]
17. Valproic acid as a potential inhibitor of Plasmodium falciparum histone deacetylase 1 (PfHDAC1): an in silico approach. Elbadawi MA; Awadalla MK; Hamid MM; Mohamed MA; Awad TA Int J Mol Sci; 2015 Feb; 16(2):3915-31. PubMed ID: 25679451 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of histone deacetylase in utero causes sociability deficits in postnatal mice. Moldrich RX; Leanage G; She D; Dolan-Evans E; Nelson M; Reza N; Reutens DC Behav Brain Res; 2013 Nov; 257():253-64. PubMed ID: 24103642 [TBL] [Abstract][Full Text] [Related]
19. Valproic acid in the complex therapy of malignant tumors. Hrebackova J; Hrabeta J; Eckschlager T Curr Drug Targets; 2010 Mar; 11(3):361-79. PubMed ID: 20214599 [TBL] [Abstract][Full Text] [Related]
20. Docking and QSAR Studies of Aryl-valproic Acid Derivatives to Identify Antiproliferative Agents Targeting the HDAC8. Martínez-Pacheco H; Ramírez-Galicia G; Vergara-Arias M; Gertsch J; Fragoso-Vazquez JM; Mendez-Luna D; Abujamra AL; Cristina CL; Cecilia RM; Mendoza-Lujambio I; Correa-Basurto J Anticancer Agents Med Chem; 2017; 17(7):927-940. PubMed ID: 27774878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]