These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21968608)

  • 1. Evaluation of the ability of collagen-glycosaminoglycan scaffolds with or without mesenchymal stem cells to heal bone defects in Wistar rats.
    Alhag M; Farrell E; Toner M; Lee TC; O'Brien FJ; Claffey N
    Oral Maxillofac Surg; 2012 Mar; 16(1):47-55. PubMed ID: 21968608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of early healing events around mesenchymal stem cell-seeded collagen-glycosaminoglycan scaffold. An experimental study in Wistar rats.
    Alhag M; Farrell E; Toner M; Claffey N; Lee TC; O'Brien F
    Oral Maxillofac Surg; 2011 Mar; 15(1):31-9. PubMed ID: 20644972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel microhydroxyapatite particles in a collagen scaffold: a bioactive bone void filler?
    Lyons FG; Gleeson JP; Partap S; Coghlan K; O'Brien FJ
    Clin Orthop Relat Res; 2014 Apr; 472(4):1318-28. PubMed ID: 24385037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells.
    Chamieh F; Collignon AM; Coyac BR; Lesieur J; Ribes S; Sadoine J; Llorens A; Nicoletti A; Letourneur D; Colombier ML; Nazhat SN; Bouchard P; Chaussain C; Rochefort GY
    Sci Rep; 2016 Dec; 6():38814. PubMed ID: 27934940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat.
    Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Moshiri A; Baharvand H
    Cell Tissue Res; 2018 Oct; 374(1):63-81. PubMed ID: 29717356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs.
    Lyons FG; Al-Munajjed AA; Kieran SM; Toner ME; Murphy CM; Duffy GP; O'Brien FJ
    Biomaterials; 2010 Dec; 31(35):9232-43. PubMed ID: 20863559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct incorporation of mesenchymal stem cells into a Nanofiber scaffold - in vitro and in vivo analysis.
    Schüttler KF; Bauhofer MW; Ketter V; Giese K; Eschbach DA; Yenigün M; Fuchs-Winkelmann S; Paletta JRJ
    Sci Rep; 2020 Jun; 10(1):9557. PubMed ID: 32533010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone regeneration in Ds-Red pig calvarial defect using allogenic transplantation of EGFP-pMSCs - A comparison of host cells and seeding cells in the scaffold.
    Hsieh MK; Wu CJ; Su XC; Chen YC; Tsai TT; Niu CC; Lai PL; Wu SC
    PLoS One; 2019; 14(7):e0215499. PubMed ID: 31318872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold.
    Petridis X; Diamanti E; Trigas GCh; Kalyvas D; Kitraki E
    J Craniomaxillofac Surg; 2015 May; 43(4):483-90. PubMed ID: 25753474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of scaffolds with pre-seeded mesenchymal stem cells in bone regeneration--assessment of osteogenic ability of scaffolds implanted under the periosteum of the cranial bone of rats.
    Baba S; Inoue T; Hashimoto Y; Kimura D; Ueda M; Sakai K; Matsumoto N; Hiwa C; Adachi T; Hojo M
    Dent Mater J; 2010 Nov; 29(6):673-81. PubMed ID: 21099156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources.
    Stockmann P; Park J; von Wilmowsky C; Nkenke E; Felszeghy E; Dehner JF; Schmitt C; Tudor C; Schlegel KA
    J Craniomaxillofac Surg; 2012 Jun; 40(4):310-20. PubMed ID: 21723141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds.
    Johari B; Ahmadzadehzarajabad M; Azami M; Kazemi M; Soleimani M; Kargozar S; Hajighasemlou S; Farajollahi MM; Samadikuchaksaraei A
    J Biomed Mater Res A; 2016 Jul; 104(7):1770-8. PubMed ID: 26990815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects.
    Haberstroh K; Ritter K; Kuschnierz J; Bormann KH; Kaps C; Carvalho C; Mülhaupt R; Sittinger M; Gellrich NC
    J Biomed Mater Res B Appl Biomater; 2010 May; 93(2):520-30. PubMed ID: 20225216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skelite) for late healing of critical size rabbit calvarial defects.
    El Backly RM; Zaky SH; Canciani B; Saad MM; Eweida AM; Brun F; Tromba G; Komlev VS; Mastrogiacomo M; Marei MK; Cancedda R
    J Craniomaxillofac Surg; 2014 Jul; 42(5):e70-9. PubMed ID: 23932544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: an animal study.
    Semyari H; Rajipour M; Sabetkish S; Sabetkish N; Abbas FM; Kajbafzadeh AM
    Cell Tissue Bank; 2016 Mar; 17(1):69-83. PubMed ID: 26108195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-CT and PET analysis of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial "critical size" defect: Preliminary data.
    Annibali S; Bellavia D; Ottolenghi L; Cicconetti A; Cristalli MP; Quaranta R; Pilloni A
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):815-25. PubMed ID: 24142538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Different Bone Grafting Materials and Mesenchymal Stem Cells on Bone Regeneration: A Micro-Computed Tomography and Histomorphometric Study in a Rabbit Calvarial Defect Model.
    Shiu ST; Lee WF; Chen SM; Hao LT; Hung YT; Lai PC; Feng SW
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenesis of peripheral blood mesenchymal stem cells in self assembling peptide nanofiber for healing critical size calvarial bony defect.
    Wu G; Pan M; Wang X; Wen J; Cao S; Li Z; Li Y; Qian C; Liu Z; Wu W; Zhu L; Guo J
    Sci Rep; 2015 Nov; 5():16681. PubMed ID: 26568114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of bone defects in rat radii with a composite of allogeneic adipose-derived stem cells and heterogeneous deproteinized bone.
    Liu J; Zhou P; Long Y; Huang C; Chen D
    Stem Cell Res Ther; 2018 Mar; 9(1):79. PubMed ID: 29587852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.