These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 21968611)
1. Seasonal and diurnal patterns of spore release can significantly affect the proportion of spores expected to undergo long-distance dispersal. Savage D; Barbetti MJ; MacLeod WJ; Salam MU; Renton M Microb Ecol; 2012 Apr; 63(3):578-85. PubMed ID: 21968611 [TBL] [Abstract][Full Text] [Related]
2. Do small spores disperse further than large spores? Norros V; Rannik U; Hussein T; Petäjä T; Vesala T; Ovaskainen O Ecology; 2014 Jun; 95(6):1612-21. PubMed ID: 25039225 [TBL] [Abstract][Full Text] [Related]
3. Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed. Reynolds AM Phytopathology; 2012 Nov; 102(11):1026-33. PubMed ID: 23046208 [TBL] [Abstract][Full Text] [Related]
4. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Brown JK; Hovmøller MS Science; 2002 Jul; 297(5581):537-41. PubMed ID: 12142520 [TBL] [Abstract][Full Text] [Related]
5. Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant-fungal interactions. Peay KG; Bruns TD New Phytol; 2014 Oct; 204(1):180-191. PubMed ID: 24975121 [TBL] [Abstract][Full Text] [Related]
6. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment. Rieux A; Soubeyrand S; Bonnot F; Klein EK; Ngando JE; Mehl A; Ravigne V; Carlier J; de Lapeyre de Bellaire L PLoS One; 2014; 9(8):e103225. PubMed ID: 25116080 [TBL] [Abstract][Full Text] [Related]
7. A general trait-based modelling framework for revealing patterns of airborne fungal dispersal threats to agriculture and native flora. Wang M; Kriticos DJ; Ota N; Brooks A; Paini D New Phytol; 2021 Nov; 232(3):1506-1518. PubMed ID: 34338336 [TBL] [Abstract][Full Text] [Related]
8. Synergistic dispersal of plant pathogen spores by jumping-droplet condensation and wind. Mukherjee R; Gruszewski HA; Bilyeu LT; Schmale DG; Boreyko JB Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34417298 [TBL] [Abstract][Full Text] [Related]
9. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Meyer M; Cox JA; Hitchings MDT; Burgin L; Hort MC; Hodson DP; Gilligan CA Nat Plants; 2017 Oct; 3(10):780-786. PubMed ID: 28947769 [TBL] [Abstract][Full Text] [Related]
10. Timing of fungal spore release dictates survival during atmospheric transport. Lagomarsino Oneto D; Golan J; Mazzino A; Pringle A; Seminara A Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5134-5143. PubMed ID: 32098849 [TBL] [Abstract][Full Text] [Related]
11. Mushrooms use convectively created airflows to disperse their spores. Dressaire E; Yamada L; Song B; Roper M Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2833-8. PubMed ID: 26929324 [TBL] [Abstract][Full Text] [Related]
12. Highways in the sky: scales of atmospheric transport of plant pathogens. Schmale DG; Ross SD Annu Rev Phytopathol; 2015; 53():591-611. PubMed ID: 26047561 [TBL] [Abstract][Full Text] [Related]
16. Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment. Shaw MW; Harwood TD; Wilkinson MJ; Elliott L Proc Biol Sci; 2006 Jul; 273(1594):1705-13. PubMed ID: 16769644 [TBL] [Abstract][Full Text] [Related]
17. Temporal patterns of ascospore release in Leptosphaeria maculans vary depending on geographic region and time of observation. Savage D; Barbetti MJ; MacLeod WJ; Salam MU; Renton M Microb Ecol; 2013 Apr; 65(3):584-92. PubMed ID: 23271454 [TBL] [Abstract][Full Text] [Related]
18. Regional context and dispersal mode drive the impact of landscape structure on seed dispersal. San-José M; Arroyo-Rodríguez V; Meave JA Ecol Appl; 2020 Mar; 30(2):e02033. PubMed ID: 31677313 [TBL] [Abstract][Full Text] [Related]
19. Modeling mycorrhizal fungi dispersal by the mycophagous swamp wallaby ( Danks MA; Simpson N; Elliott TF; Paine CET; Vernes K Ecol Evol; 2020 Dec; 10(23):12920-12928. PubMed ID: 33304504 [TBL] [Abstract][Full Text] [Related]
20. Shade Effects on the Dispersal of Airborne Hemileia vastatrix Uredospores. Boudrot A; Pico J; Merle I; Granados E; Vílchez S; Tixier P; Filho Ede M; Casanoves F; Tapia A; Allinne C; Rice RA; Avelino J Phytopathology; 2016 Jun; 106(6):572-80. PubMed ID: 26828230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]