These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hybrid multiobjective evolutionary design for artificial neural networks. Goh CK; Teoh EJ; Tan KC IEEE Trans Neural Netw; 2008 Sep; 19(9):1531-48. PubMed ID: 18779086 [TBL] [Abstract][Full Text] [Related]
4. Neural network learning with global heuristic search. Jordanov I; Georgieva A IEEE Trans Neural Netw; 2007 May; 18(3):937-42. PubMed ID: 17526362 [TBL] [Abstract][Full Text] [Related]
5. Learning ensembles of neural networks by means of a Bayesian artificial immune system. Castro PA; Von Zuben FJ IEEE Trans Neural Netw; 2011 Feb; 22(2):304-16. PubMed ID: 21189236 [TBL] [Abstract][Full Text] [Related]
6. Hybridization of evolutionary algorithms and local search by means of a clustering method. Martínez-Estudillo AC; Hervás-Martínez C; Martínez-Estudillo FJ; García-Pedrajas N IEEE Trans Syst Man Cybern B Cybern; 2006 Jun; 36(3):534-45. PubMed ID: 16761808 [TBL] [Abstract][Full Text] [Related]
8. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. Feng G; Huang GB; Lin Q; Gay R IEEE Trans Neural Netw; 2009 Aug; 20(8):1352-7. PubMed ID: 19596632 [TBL] [Abstract][Full Text] [Related]
9. A dynamic hybrid framework for constrained evolutionary optimization. Wang Y; Cai Z IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):203-17. PubMed ID: 21824851 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity versus accuracy in multiclass problems using memetic Pareto evolutionary neural networks. Fernández Caballero JC; Martínez FJ; Hervás C; Gutiérrez PA IEEE Trans Neural Netw; 2010 May; 21(5):750-70. PubMed ID: 20227976 [TBL] [Abstract][Full Text] [Related]
12. Dynamic extreme learning machine and its approximation capability. Zhang R; Lan Y; Huang GB; Xu ZB; Soh YC IEEE Trans Cybern; 2013 Dec; 43(6):2054-65. PubMed ID: 23757515 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization. Kiranyaz S; Ince T; Yildirim A; Gabbouj M Neural Netw; 2009 Dec; 22(10):1448-62. PubMed ID: 19556105 [TBL] [Abstract][Full Text] [Related]
14. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks. Huynh HT; Won Y; Kim JJ Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365 [TBL] [Abstract][Full Text] [Related]
15. An adaptive multiobjective approach to evolving ART architectures. Kaylani A; Georgiopoulos M; Mollaghasemi M; Anagnostopoulos GC; Sentelle C IEEE Trans Neural Netw; 2010 Apr; 21(4):529-50. PubMed ID: 20172827 [TBL] [Abstract][Full Text] [Related]
16. Evolutionary neural networks for anomaly detection based on the behavior of a program. Han SJ; Cho SB IEEE Trans Syst Man Cybern B Cybern; 2006 Jun; 36(3):559-70. PubMed ID: 16761810 [TBL] [Abstract][Full Text] [Related]
17. Neural network training with global optimization techniques. Yamazaki A; Ludermir TB Int J Neural Syst; 2003 Apr; 13(2):77-86. PubMed ID: 12923920 [TBL] [Abstract][Full Text] [Related]
18. A hierarchical method for finding optimal architecture and weights using evolutionary least square based learning. Ghosh R; Verma B Int J Neural Syst; 2003 Feb; 13(1):13-24. PubMed ID: 12638120 [TBL] [Abstract][Full Text] [Related]
19. Multiobjective hybrid optimization and training of recurrent neural networks. Delgado M; Cuéllar MP; Pegalajar MC IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):381-403. PubMed ID: 18348922 [TBL] [Abstract][Full Text] [Related]
20. Magnified gradient function with deterministic weight modification in adaptive learning. Ng SC; Cheung CC; Leung SH IEEE Trans Neural Netw; 2004 Nov; 15(6):1411-23. PubMed ID: 15565769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]