These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 21969005)
1. Assessment of willow (Salix sp.) as a woody heavy metal accumulator: field survey and in vivo X-ray analyses. Harada E; Hokura A; Nakai I; Terada Y; Baba K; Yazaki K; Shiono M; Mizuno N; Mizuno T Metallomics; 2011 Dec; 3(12):1340-6. PubMed ID: 21969005 [TBL] [Abstract][Full Text] [Related]
2. Characterization of cadmium accumulation in willow as a woody metal accumulator using synchrotron radiation-based X-ray microanalyses. Harada E; Hokura A; Takada S; Baba K; Terada Y; Nakai I; Yazaki K Plant Cell Physiol; 2010 May; 51(5):848-53. PubMed ID: 20378764 [TBL] [Abstract][Full Text] [Related]
3. Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments. Vandecasteele B; Laing GD; Quataert P; Tack FM Sci Total Environ; 2005 Apr; 341(1-3):251-63. PubMed ID: 15833256 [TBL] [Abstract][Full Text] [Related]
4. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
5. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Unterbrunner R; Puschenreiter M; Sommer P; Wieshammer G; Tlustos P; Zupan M; Wenzel WW Environ Pollut; 2007 Jul; 148(1):107-14. PubMed ID: 17224228 [TBL] [Abstract][Full Text] [Related]
6. Distribution and speciation of metals in annual rings of black willow. Punshon T; Lanzirotti A; Harper S; Bertsch PM; Burger J J Environ Qual; 2005; 34(4):1165-73. PubMed ID: 15942035 [TBL] [Abstract][Full Text] [Related]
7. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Vandecasteele B; Meers E; Vervaeke P; De Vos B; Quataert P; Tack FM Chemosphere; 2005 Feb; 58(8):995-1002. PubMed ID: 15664607 [TBL] [Abstract][Full Text] [Related]
8. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Yanqun Z; Yuan L; Schvartz C; Langlade L; Fan L Environ Int; 2004 Jun; 30(4):567-76. PubMed ID: 15031017 [TBL] [Abstract][Full Text] [Related]
9. Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix). Watson C; Pulford ID; Riddell-Black D Int J Phytoremediation; 2003; 5(4):333-49. PubMed ID: 14750561 [TBL] [Abstract][Full Text] [Related]
10. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Vandecasteele B; Quataert P; Genouw G; Lettens S; Tack FM Sci Total Environ; 2009 Oct; 407(20):5289-97. PubMed ID: 19619889 [TBL] [Abstract][Full Text] [Related]
11. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants. Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650 [TBL] [Abstract][Full Text] [Related]
12. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
13. Seasonal variations of metal (Cd, Pb, Mn, Cu, Zn) accumulation in a voluntary species, Salix subfragilis, in unpolluted wetlands. Kim HT; Kim JG Sci Total Environ; 2018 Jan; 610-611():1210-1221. PubMed ID: 28851142 [TBL] [Abstract][Full Text] [Related]
14. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Meers E; Lamsal S; Vervaeke P; Hopgood M; Lust N; Tack FM Environ Pollut; 2005 Sep; 137(2):354-64. PubMed ID: 15963374 [TBL] [Abstract][Full Text] [Related]
15. Phytoextraction of heavy metals by willows growing in biosolids under field conditions. Laidlaw WS; Arndt SK; Huynh TT; Gregory D; Baker AJ J Environ Qual; 2012; 41(1):134-43. PubMed ID: 22218182 [TBL] [Abstract][Full Text] [Related]
16. Spatial distribution of arsenic and heavy metals in willow roots from a contaminated floodplain soil measured by X-ray fluorescence spectroscopy. Zimmer D; Kruse J; Baum C; Borca C; Laue M; Hause G; Meissner R; Leinweber P Sci Total Environ; 2011 Sep; 409(19):4094-100. PubMed ID: 21762954 [TBL] [Abstract][Full Text] [Related]
17. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Fritioff A; Greger M Chemosphere; 2006 Apr; 63(2):220-7. PubMed ID: 16213560 [TBL] [Abstract][Full Text] [Related]
18. Phytoextraction of risk elements by willow and poplar trees. Kacálková L; Tlustoš P; Száková J Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931 [TBL] [Abstract][Full Text] [Related]
19. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. Pilipović A; Zalesny RS; Rončević S; Nikolić N; Orlović S; Beljin J; Katanić M J Environ Manage; 2019 Jun; 239():352-365. PubMed ID: 30921754 [TBL] [Abstract][Full Text] [Related]
20. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]